Junjie Shen

Address: 541 Oakside Ave Apt. D, Redwood City, CA 94063 Email: junjies1@uci.edu, Phone: +1 (919) 279-5935 Homepage: https://junjieshen.com/

Education

2016-2022	Ph.D. in Computer Science, University of California, Irvine, CA
	Advisor: Prof. Qi Alfred Chen
	Research Interests: Autonomous Driving Security, AI/ML Security.
2014-2015	M.S. in Computer Engineering, North Carolina State University, Raleigh, NC
2009–2013	B.E. in Communication Engineering, Hangzhou Dianzi University, China

Selected Projects

2019–2021	Security of Deep Learning based Automated Lane Centering under Physical-World
	Attack
	Designed the first systematic approach to attack real-world DNN-based Automated Lane
	Centering (ALC) systems. Proposed an adversarial dirty road patch generation method,
	which considers the vehicle motion, physical-world realizability, and stealthiness. Our at-
	tack can successfully cause a production-grade ALC system, <i>OpenPilot</i> , to drive off lane
	boundaries within as short as 0.95 seconds. Skills Involved: Adversarial Machine Learning, LCSVI Autonomous Driving Simulator
	OpenPilot
2018-2020	Security of Multi-Sensor Fusion based Localization in Autonomous Vehicles
	Performed the first security analysis on the state-of-the-art Multi-Sensor Fusion (MSF)
	based localization algorithm in Autonomous Vehicle. Discovered a security vulnerability
	in the MSF design that enables the attacker to take over the localization via GPS spoofing.
	Our proposed attack method can deviate the vehicle to drive off-road or on the wrong-way
	with 97% and 91.5% success rates, respectively.
	Skiis Invoivea. Binary Analysis, Cause Analysis, Optimization, Balau Apolio
2018–2019	Vulnerability Discovery in Open-Source Autonomous Vehicle Systems
	Wrote fuzzing tests for open-source Autonomous Vehicle systems such as Baidu Apollo and Automous to find activities underschilitise. Identify the limitations of avisting fuzzers
	Skills Involved: Dynamic Analysis Cause Analysis
2015	
2017	Compiler Assisted Simultaneous Fault and Side-Channel Attack Mitigation
	gram against fault and side-channel attacks. Results showed that it can fully mitigate power
	side-channel attacks, and achieves 99.47% fault coverage on average.
	Skills Involved: Intel Pin, LLVM, Correlation Power Analysis

Publications

Summary: 7 in top-tier conferences across various areas, 6 of them focus on Autonomous Driving Security.

• Security (NDSS'22, USENIX Security'21, USENIX Security'20), machine learning (ICLR'20), software engineering (ICSE'20), systems (ATC'19), transportation systems (IV'21)

Conference/Journal Publications

(* denotes equal contributions; top-tier conferences are highlighted in **bold**)

NDSS'22	Ziwen Wan, Junjie Shen , Jalen Chuang, Xin Xia, Joshua Garcia, Jiaqi Ma, and Qi Al- fred Chen. Systematic Discovery of Denial-of-Service Vulnerability in Autonomous Driv- ing Planning under Physical-World Attacks. In <i>Network and Distributed System Security</i> (<i>NDSS</i>) Symposium, 2022
TRB'22	Zhen Yang, Jun Ying, Junjie Shen , Yiheng Feng, Qi Alfred Chen, Z Morley Mao, and Henry X Liu. Anomaly Detection in Localization Module of Autonomous Vehicles Using Learning from Demonstration. <i>Transportation Research Board Annual Meeting</i> , 2022
USENIX Security'21	Junjie Shen *, Takami Sato*, Ningfei Wang, Yunhan Jack Jia, Xue Lin, and Qi Alfred Chen. Dirty Road Can Attack: Security of Deep Learning based Automated Lane Centering under Physical-World Attack. In <i>USENIX Security Symposium (USENIX Security)</i> , 2021. (<i>Acceptance rate 18.7% = 246/1316</i>)
IV'21	Ruochen Jiao, Hengyi Liang, Takami Sato, Junjie Shen , Qi Alfred Chen, and Qi Zhu. End- to-end Uncertainty-based Mitigation of Adversarial Attacks to Automated Lane Centering. In <i>32nd IEEE Intelligent Vehicles Symposium (IV)</i> , 2021
USENIX Security'20	Junjie Shen , Jun Yeon Won, Zeyuan Chen, and Qi Alfred Chen. Drift with Devil: Security of Multi-Sensor Fusion based Localization in High-Level Autonomous Driving under GPS Spoofing. In USENIX Security Symposium (USENIX Security), 2020. (Acceptance rate 16.1% = 157/977)
ICLR'20	Yunhan Jia*, Yantao Lu*, Junjie Shen , Qi Alfred Chen, Hao Chen, Zhenyu Zhong, and Tao Wei. Fooling Detection Alone is Not Enough: Adversarial Attack against Multiple Object Tracking. In <i>International Conference on Learning Representations (ICLR)</i> , 2020. (<i>Acceptance rate 26.5% = 687/2594</i>)
ICSE'20	Joshua Garcia, Yang Feng, Junjie Shen , Sumaya Almanee, Yuan Xia, and Qi Alfred Chen. A Comprehensive Study of Autonomous Vehicle Bugs. In <i>ACM/IEEE International Con-</i> <i>ference on Software Engineering (ICSE)</i> , 2020. (<i>Acceptance rate 23.5% = 129/550</i>)
ATC'19	Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen, Sarah Spall, Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah Younis, Junjie Shen , Moinak Bhattacharyya, and Anton Burtsev. LXDs: Towards Isolation of Kernel Subsystems. In <i>USENIX Annual Technical Conference (USENIX ATC)</i> , 2019. (<i>Acceptance rate 19.9%</i> = 71/356)
IPDPS'19	Gongjin Sun, Junjie Shen , and Alex Veidenbaum. Combining Prefetch Control and Cache Partitioning to Improve Multicore Performance. In <i>IEEE International Parallel & Distributed Processing Symposium (IPDPS)</i> . IEEE, 2019. (<i>Acceptance rate 27.7% = 103/372</i>)
LCPC'18	Junjie Shen , Zhi Chen, Nahid Farhady Ghalaty, Rosario Cammarota, Alex Nicolau, and Alex Veidenbaum. New Opportunities for Compilers in Computer Security. In <i>Languages and Compilers for Parallel Computing (LCPC)</i> . Springer, 2018
IEEE Access 2018	Yonghua Mao, Junjie Shen , and Xiaolin Gui. A Study on Deep Belief Net for Branch Prediction. <i>IEEE Access</i> , 2018
FDTC'17	Zhi Chen, Junjie Shen , Alex Nicolau, Alex Veidenbaum, Nahid Farhady Ghalaty, and Rosario Cammarota. CAMFAS: A Compiler Approach to Mitigate Fault Attacks Via Enhanced SIMDization. In <i>Fault Diagnosis and Tolerance in Cryptography</i> . IEEE, 2017

Workshops/Posters

AutoSec 2021	Kanglan Tang, Junjie Shen , and Qi Alfred Chen. Fooling Perception via Location: A Case of Region-of-Interest Attacks on Traffic Light Detection in Autonomous Driving. In <i>Third International Workshop on Automotive and Autonomous Vehicle Security (AutoSec)</i> , 2021
AutoSec 2021	Junjie Shen *, Takami Sato*, Ningfei Wang, Yunhan Jack Jia, Xue Lin, and Qi Alfred Chen. WIP: Deployability Improvement, Stealthiness User Study, and Safety Impact Assessment on Real Vehicle for Dirty Road Patch Attack. In <i>Third International Workshop on Automo-</i> <i>tive and Autonomous Vehicle Security (AutoSec)</i> , 2021
AutoSec 2021	Hengyi Liang*, Ruochen Jiao*, Takami Sato, Junjie Shen , Qi Alfred Chen, and Qi Zhu. WIP: End-to-End Analysis of Adversarial Attacks to Automated Lane Centering Systems. In <i>Third International Workshop on Automotive and Autonomous Vehicle Security (AutoSec)</i> , 2021. Best Short Paper Award
NDSS Poster 2020	Junjie Shen *, Takami Sato*, Ningfei Wang, Yunhan Jack Jia, Xue Lin, and Qi Alfred Chen. Poster: Security of Deep Learning based Lane Keeping Assistance System under Physical- World Adversarial Attack. In <i>Network and Distributed System Security Symposium (NDSS)</i> , 2020. Best Technical Poster Award
NDSS Poster 2019	Junjie Shen, Jun Yeon Won, Shinan Liu, Qi Alfred Chen, and Alexander Veidenbaum. Poster: Security Analysis of Multi-Sensor Fusion based Localization in Autonomous Vehi- cles. In <i>Network and Distributed System Security Symposium (NDSS)</i> , 2019. Distinguished Poster Presentation Award
CVPR Workshop 2019	Yunhan Jia*, Yantao Lu*, Junjie Shen , Qi Alfred Chen, Zhenyu Zhong, and Tao Wei. Fooling Detection Alone is Not Enough: First Adversarial Attack against Multiple Object Tracking. In <i>CVPR Adversarial Machine Learning in Real-World Computer Vision Systems</i> <i>Workshop</i> , 2019. Oral Presentation

Academic Services

Organizer	Autonomous Driving CTF at DEF CON 29 (AutoDriving CTF), Las Vegas, NV, Aug 2021
Web Chair	IEEE Workshop on the Internet of Safe Things (SafeThings), 2021
Reviewer	International Conference on Learning Representations (ICLR), 2021, 2022, 2023
Reviewer	Neural Information Processing Systems (NeurIPS), 2022
PC Member	DYnamic and Novel Advances in Machine Learning and Intelligent Cyber Security work-
	shop (DYNAMICS), 2020
Reviewer	International Conference on Machine Learning (ICML), 2020
Reviewer	ACM Transactions on Cyber-Physical Systems (TCPS), 2020
Reviewer	International Journal of Parallel Programming (IJPP), 2016, 2018
Reviewer	International Journal of Parallel Programming (IJPP), 2016, 2018

Mentoring and Teaching Experience

Mentoring

12/19-03/21	Kanglan Tang (UCI B.S., now M.S. at UC Berkeley): Chancellors Award for Excellence
	in Undergraduate Research, NDSS'21 Student Travel Grant, Publication: AutoSec'21
	(1st author)
09/19-07/20	Zeyuan Chen (UCI B.S., now M.S. at CMU): Publication: USENIX Security'20
07/18-07/19	Jun Yeon Won (UCI M.S., now Ph.D. at OSU): NDSS'19 Distinguished Poster Presenta-
	tion Award, Publication: USENIX Security'20

Teaching Assistant

UCI Principles in System Design, Principles of Operating Systems, Data Structure Implementation and Analysis, Parallel and Distributed Computing
NCSU Introduction to Computer Systems, Architecture of Parallel Computers

Awards

Oct 2021	The Beall Family Foundation Graduate Student Entrepreneur Award in Computer
	Science, UC Irvine
June 2021	Graduate Dean's Dissertation Fellowship, UC Irvine
Feb 2021	Best Short Paper Award for "End-to-End Analysis of Adversarial Attacks to Automated
	Lane Centering Systems" at AutoSec 2021 (highest-scored short paper)
Sept 2020	Champion, The first Autonomous Driving CTF hosted by Baidu Security (top 1/24 teams)
Feb 2020	Best Technical Poster Award for "Security of Deep Learning based Lane Keeping Assis-
	tance System under Physical-World Adversarial Attack" at ISOC NDSS 2020 (top 1/30)
Feb 2019	Distinguished Poster Presentation Award for "Security Analysis of Multi-Sensor Fusion
	based Localization in Autonomous Vehicles" at ISOC NDSS 2019 (top 2/36)
2019-2021	Student Travel Grants, USENIX Security'20, USENIX Security'21, IEEE S&P'21

Work Experience

03/21-12/21	Security Research Intern at Baidu Research, Sunnyvale, CA.
	Mentors: Dr. Zhisheng Hu, Dr. Shengjian Guo, and Prof. Kang Li
	Organize the AutoDriving CTF on behalf of the AS ² Guard Group at UC Irvine. Jobs in-
	clude drafting DEF CON contest proposal, designing Autonomous Driving CTF challenges, deploying evaluation servers, managing and hosting the CTF at DEF CON 29 in Las Vegas. <i>Over 100 teams participated in the AutoDriving CTF worldwide.</i>
06/17–09/17	CPU Performance Modeling Intern at Qualcomm, Raleigh, NC.
	Mentors: Dr. Arthur Perais and Dr. Luke Yen
	Developed tool to extract and break down instruction critical path in microarchitectural
	simulator. Identified several memory accessing and control flow bottlenecks in Qualcomm's
	ARM-based server CPU microarchiecture design.
	<i>Received a rating of superb in the intern performance review.</i>
05/15-08/15	Research Intern at AMD Research, Beijing, China.
	Mentor: Dr. Guoqing Chen
	Characterized DNN workloads on AMD GPUs by exhaustively searching the GPU design
	space, e.g., computing units, GPU frequency, memory bandwidth, cache size, etc.
03/12-10/12	Software Engineering Intern at Uniview Technologies, Zhejiang, China
	Developed Linux device driver for video encoders and decoders.

Skills

Programming	C/C++, Python, Shell Script, Verilog HDL
Tools	LibFuzzer, Intel Pin, IDA Pro, Keras, TensorFlow, GDB
Platforms	Baidu Apollo, Autoware, OpenPilot, ROS, CyberRT, LGSVL Simulator, CARLA Simulator, Unity, LLVM, Linux Kernel