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Abstract

Recent work in adversarial machine learning started to focus on the visual percep-
tion in autonomous driving and studied Adversarial Examples (AEs) for object
detection models. However, in such visual perception pipeline the detected objects
must also be tracked, in a process called Multiple Object Tracking (MOT), to build
the moving trajectories of surrounding obstacles. Since MOT is designed to be
robust against errors in object detection, it poses a general challenge to existing
attack techniques that blindly target objection detection: we find that a success rate
of over 98% is needed for them to actually affect the tracking results, a requirement
that no existing attack technique can satisfy. In this paper, we are the first to
study adversarial machine learning attacks against the complete visual perception
pipeline in autonomous driving, and discover a novel attack technique, tracker
hijacking, that can effectively fool MOT using AEs on object detection. Using
our technique, successful AEs on as few as one single frame can move an existing
object in to or out of the headway of an autonomous vehicle to cause potential
safety hazards. We perform evaluation using the Berkeley Deep Drive dataset and
find that on average when 3 frames are attacked, our attack can have a nearly 100%
success rate while attacks that blindly target object detection only have up to 25%.

1 Introduction
Since the first Adversarial Example (AE) against traffic sign image classification discovered by
Eykholt et al. [10], several research work in adversarial machine learning [9, 30, 15, 16, 35, 6]
started to focus on the context of visual perception in autonomous driving, and studied AEs on object
detection models. For example, Eykholt et al. [9] and Zhong et al. [36] studied AEs in the form of
adversarial stickers on stop signs or the back of front cars against YOLO object detectors [23], and
performed indoor experiments to demonstrate the attack feasibility in the real world. Building upon
these work, most recently Zhao et al. [35] leveraged image transformation techniques to improve the
robustness of such adversarial sticker attacks in outdoor settings, and were able to achieve a 72%
attack success rate with a car running at a constant speed of 30 km/h on real roads.

While these results from prior work are alarming, object detection is in fact only the first half of
the visual perception pipeline in autonomous driving, or in robotic systems in general — in the
second half, the detected objects must also be tracked, in a process called Multiple Object Tracking
(MOT), to build the moving trajectories, called trackers, of surrounding obstacles. This is required for
the subsequent driving decision making process, which needs the built trajectories to predict future
moving trajectories for these obstacles and then plan a driving path accordingly to avoid collisions
with them. To ensure high tracking accuracy and robustness against errors in object detection, in
MOT only the detection results with sufficient consistency and stability across multiple frames can be
included in the tracking results and actually influence the driving decisions. Thus, MOT in the visual
perception of autonomous driving poses a general challenge to existing attack techniques that blindly
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Figure 1: The complete visual perception pipeline in autonomous driving, i.e., both object detection
and Multiple Object Tracking (MOT) [3, 13, 12, 34, 8, 19, 28].

target objection detection. For example, as shown by our analysis later in §4, an attack on objection
detection needs to succeed consecutively for at least 60 frames to fool a representative MOT process,
which requires an at least 98% attack success rate (§4). To the best of our knowledge, no existing
attacks on objection detection can achieve such a high success rate [9, 30, 15, 16, 35, 6].

In this paper, we are the first to study adversarial machine learning attacks considering the complete
visual perception pipeline in autonomous driving, i.e., both object detection and object tracking, and
discover a novel attack technique, called tracker hijacking, that can effectively fool the MOT process
using AEs on object detection. Our key insight is that although it is highly difficult to directly create
a tracker for fake objects or delete a tracker for existing objects, we can carefully design AEs to
attack the tracking error reduction process in MOT to deviate the tracking results of existing objects
towards an attacker-desired moving direction. Such process is designed for increasing the robustness
and accuracy of the tracking results, but ironically, we find that it can be exploited by attackers to
substantially alter the tracking results. Leveraging such attack technique, successful AEs on as few as
one single frame is enough to move an existing object in to or out of the headway of an autonomous
vehicle and thus may cause potential safety hazards.

We select 20 out of 100 randomly sampled video clips from the Berkeley Deep Drive dataset to
evaluate our attack technique. Under recommended MOT algorithm configurations in practice [37]
and normal measurement noise levels, we find that our attack can succeed with successful AEs on
as few as one frame, and 2 to 3 consecutive frames on average. We also reproduce and compare
with previous attacks that blindly target object detection, and find that when attacking 3 consecutive
frames, our attack has a nearly 100% success rate while attacks that blindly target object detection
only have up to 25%.

Contributions. In summary, this paper makes the following contributions:

• We are the first to study adversarial machine learning attacks considering the complete visual
perception pipeline in autonomous driving, i.e., both object detection and MOT. We find
that without considering MOT, an attack blindly targeting object detection needs at least a
success rate of 98% to actually affect the complete visual perception pipeline in autonomous
driving, which is a requirement that no existing attack technique can satisfy.

• We discover a novel attack technique, tracker hijacking, that can effectively fool MOT using
AEs on object detection. This technique exploits the tracking error reduction process in
MOT, and can enable successful AEs on as few as one single frame to move an existing
object in to or out of the headway of an autonomous vehicle to cause potential safety hazards.

• The attack evaluation using the Berkeley Deep Drive dataset shows that our attack can
succeed with successful AEs on as few as one frame, and only 2 to 3 consecutive frames on
average, and when 3 consecutive frames are attacked, our attack has a nearly 100% success
rate while attacks that blindly target object detection only have up to 25%.

• Code and evaluation data are all available at an anonymized GitHub repository [1].
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2 Background and Related Work

Adversarial examples for object detection. Since the first physical adversarial examples against
traffic sign classifier demonstrated by Eykholt et al. [10], several work in adversarial machine
learning [9, 30, 15, 16, 35, 6] have been focused on the visual perception task in autonomous driving,
and more specifically, the object detection models. To achieve high attack effectiveness in practice,
the key challenge is how to design robust attacks that can survive distortions in real-world driving
scenarios such as different viewing angles, distances, lighting conditions, and camera limitations. For
example, Lu et al. [15] shows that AEs against Faster-RCNN [25] generalize well across a sequence
of images in digital space, but fail in most of the sequence in physical world; Eykholt et al. [9]
generates adversarial stickers that, when attached to stop sign, can fool YOLOv2 [23] object detector,
while it is only demonstrated in indoor experiment within short distance; Chen et al. [6] generates
AEs based on expectation over transformation techniques, while their evaluation shows that the AEs
are not robust to multiple angles, probably due to not considering perspective transformations [35].
It was not until recently that physical adversarial attacks against object detectors achieve a decent
success rate (70%) in fixed-speed (6 km/h and 30 km/h) road test [35].

While the current progress in attacking object detection is indeed impressive, in this paper we
argue that in the actual visual perception pipeline of autonomous driving, object tracking, or more
specifically MOT, is a integral step, and without considering it, existing adversarial attacks against
object detection still cannot affect the visual perception results even with high attack success rate. As
shown in our evaluation in §4, with a common setup of MOT, an attack on object detection needs
to reliably fool at least 60 consecutive frames to erase one object (e.g., stop sign) from the tracking
results, in which case even a 98% attack success rate on object detectors is not enough (§4).

MOT background. MOT aims to identify objects and their trajectories in video frame sequence.
With the recent advances in object detection, tracking-by-detection [18] has become the dominant
MOT paradigm, where the detection step identifies the objects in the images and the tracking step links
the objects to the trajectories (i.e., trackers). Such paradigm is widely adopted in autonomous driving
systems today [3, 13, 12, 34, 8, 19, 28], and a more detailed illustration is in Fig. 1. As shown, each
detected objects at time twill be associated with a dynamic state model (e.g., position, velocity), which
represents the past trajectory of the object (track|t−1). A per-track Kalman filter [3, 13, 11, 20, 32]
is used to maintain the state model, which operates in a recursive predict-update loop: the predict step
estimates current object state according to a motion model, and the update step takes the detection
results detc|t as measurement to update its state estimation result track|t.
The association between detected objects with existing trackers is formulated as a bipartite matching
problem [27, 11, 20] based on the pairwise similarity costs between the trackers and detected
objects, and the most commonly used similarity metric is the spatial-based cost, which measures the
overlapping between bounding boxes, or bboxes [3, 14, 29, 27, 11, 20, 37, 32, 4, 5]. To reduce errors
in this association, an accurate velocity estimation is necessary in the Kalman filter prediction [7, 31].
Due to the discreteness of camera frames, Kalman filter uses the velocity model to estimate the
location of the tracked object in the next frame in order to compensate the object motion between
frames. However, as described later in §3, such error reduction process unexpectedly makes it
possible to perform tracker hijacking.

MOT manages tracker creation and deletion with two thresholds. Specifically a new tracker will
be created only when the object has been constantly detected for a certain number of frames, this
threshold will be referred to as the hit count, or H in the rest of the paper. This helps to filter out
occasional false positives produced by object detectors. On the other hand, a tracker will be deleted
if no objects is associated with for a duration of R frames, or called a reserved age. It prevents the
tracks from being accidentally deleted due to infrequent false negatives of object detectors. The
configuration of R and H usually depends on both the accuracy of detection models, and the frame
rate (fps). Previous work suggest a configuration of R = 2· fps, and H = 0.2· fps [37], which gives
a R = 60 frames and H = 6 frames for a common 30 fps visual perception system. We will show in
§4 that an attack that blindly targeting object detection needs to constantly fool at least 60 frames (R)
to erase an object, while our proposed tracker hijacking attack can fabricate object that last for R
frames and vanish target object for H frames in the tracking result by attacking as few as one frame,
and only 2~3 frames on average (S4).
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Figure 2: Description of the tracker hijacking attack flow (a), and two different attack scenarios:
object move-in (b) and move-out (c), where tracker hijacking may lead to severe safety consequences
including emergency stop and rear-end crashes.

3 Tracker Hijacking Attack
Overview. Fig. 2a illustrates the tracker hijacking attack discovered in this paper, in which an AE for
object detection (e.g., in the form of adversarial patches on the front car) that can fool the detection
result for as few as one frame can largely deviate the tracker of a target object (e.g., a front car) in
MOT. As shown, the target car is originally tracked with a predicted velocity to the left at t0. The
attack starts at time t1 by applying an adversarial patch onto the back of the car. The patch is carefully
generated to fool the object detector with two adversarial goals: (1) erase the bounding box of target
object from detection result, and (2) fabricate a bounding box with similar shape that is shifted a little
bit towards an attacker-specified direction. The fabricated bounding box (red one in detection result
at t1) will be associated with the original tracker of target object in the tracking result, which we call
a hijacking of the tracker, and thus would give a fake velocity towards the attacker-desired direction
to the tracker. The tracker hijacking shown in Fig. 2a lasts for only one frame, but its adversarial
effects could last tens of frames, depending on the MOT parameter R and H (introduced in §2). For
example, at time t2 after the attack, all detection bounding boxes are back to normal, however, two
adversarial effects persist: (1) the tracker that has been hijacked with attacker-induced velocity will
not be deleted until a reserved age (R) has passed, and (2) the target object, though is recovered in
the detection result, will not be tracked until a hit count (H) has reached, and before that the object
remains missing in the tracking result. However, it’s important to note that our attack may not always
succeed with one frame in practice, as the recovered object may still be associated with its original
tracker, if the tracker is not deviated far enough from the object’s true position during a short attack
duration. Our empirical results show that our attack usually achieves a nearly 100% success rate
when 3 consecutive frames are successfully attacked using AE (§4).

Such persistent adversarial effects may cause severe safety consequences in self-driving scenarios.
We highlight two attack scenarios that can cause emergency stop or even a rear-end crashes:

Attack scenario 1: Target object move-in. Shown in Fig. 2b, an adversarial patch can be placed on
roadside objects, e.g., a parked vehicle to deceive visual perception of autonomous vehicles passing
by. The adversarial patch is generated to cause a translation of the target bounding box towards the
center of the road in the detection result, and the hijacked tracker will appear as a moving vehicle
cutting in front in the perception of the victim vehicle. This tracker would last for 2 seconds if R
is configured as 2· fps as suggested in [37], and tracker hijacking in this scenario could cause an
emergency stop and potentially a rear-end crash.

Attack scenario 2: Target object move-out. Similarly, tracker hijacking attack can also deviate
objects in front of the victim autonomous vehicle away from the road to cause a crash as shown in
Fig. 2c. Adversarial patch applied on the back of front car could deceive MOT of autonomous vehicle
behind into believing that the object is moving out of its way, and the front car will be missing from
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the tracking result for a duration of 200ms, if H uses the recommended configuration of 0.2· fps [37].
This may cause the victim autonomous vehicle to crash into the front car.

3.1 Attack Methodology

Algorithm 1 Tracker Hijacking Attack
Input: Video image sequence X = [x0, x1, ..., xn]; object detector D(·); MOT algorithm Trk(·);
Input: Index of target object to be hijacked K, attacker-desired directional velocity #»v , adversarial
patch area as a mask matrix patch.
Output: Sequence of adversarial examples X ′ = [x′1, ..., x

′
r] required for a successful attack.

Initialization X ′ ← {}, detc|0 ← D(x0), track|0 ← {current_tracks}
1: for t = 1 to n do
2: detc|t ← D(xt)
3: if detc|t[K] matches track|t−1[K] then . target object matches with an existing tracker
4: find position pos to place fabricated bbox with Eq. 1

pos← FINDPOS(Trk(·), track|t−1,K,
#»v , patch) see SuppAlg.1.1

5: generate adversarial frame x′ with Eq. 2 . attack object detector with specialized loss

x′t ← GENERATEADV(x,D(·), pos,K, patch) see SuppAlg.1.2

6: X ′
+←− x′t

7: else
8: return X ′ . attack succeeds when target object is not associated with original tracker
9: end if

10: track|t ← Trk(track|t−1, D(x′t)) . update current tracker with adversarial frame
11: end for

Targeted MOT design. Our attack targets the most common MOT pipeline described in §2. Specifi-
cally, we target first-order Kalman filter which predicts a state vector containing position and velocity
of detected objects over time. For the data association, we adopt the mostly widely used Intersection
over Union (IoU) as the similarity metric, and the IoU between bounding boxes are calculated by
Hungarian matching algorithm [17] to solve the bipartite matching problem that associates bounding
boxes detected in consecutive frames with existing trackers. Such combination of algorithms in the
MOT is the most common in previous work [14, 29, 27] and real-world systems [3].

We now describe our methodology of generating an adversarial patch that manipulates detection
results to hijack a tracker. As detailed in Alg. 1, given a targeted video image sequence, the attack
iteratively finds the minimum required frames to perturb for a successful track hijack, and generates
the adversarial patches for these frames. In each attack iteration, an image frame in the original video
clip is processed, and given the index of target objects K, the algorithm finds an optimal position
to place the adversarial bounding box pos in order to hijack the tracker of target object by solving
Eq. 1. The attack then constructs adversarial frame against object detection model with an adversarial
patch, using Eq. 2 as the loss function to erase the original bounding box of target object and fabricate
the adversarial bounding box at the given location. The tracker is then updated with the adversarial
frame that deviates the tracker from its original direction. If the target object in the next frame is
not associate with its original tracker by the MOT algorithm, attack has succeeded; otherwise, this
process is repeated for the next frame. We discuss two critical steps in this algorithm below, and
please refer to our supplementary material for the complete implementation of the algorithm.

Finding optimal position for adversarial bounding box. To deviate the tracker of a target object
K, besides removing its original bounding box detc|t[K], the attack also needs to fabricate an
adversarial box with a shift δ towards a specified direction. This turns into an optimization problem
(Eq. 1) of finding the translation vector δ that maximizes the cost of Hungarian matching (M(·))
between the detection box and the existing tracker so that the bounding box is still associated with
its original tracker (M ≤ λ), but the shift is large enough to give an adversarial velocity to the
tracker. Note that we also limit the shifted bounding box to be overlapped with the patch to facilitate
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hijacking attack that fabricates bbox with carefully chosen position successfully redirects the tracker
towards attacker-specified direction (c).

adversarial example generation , as it’s often easier for adversarial perturbations to affect prediction
results in its proximity, especially in physical settings [6].

max
δ
M(detc|t[K] + δ, track|t−1[K])

s.t.M≤ λ, IoU(detc|t[K] + δ, patch) > γ
(1)

Generating adversarial patch against object detection. Similar to the existing adversarial attacks
against object detection models [6, 10, 35], we also formulate the adversarial patch generation as an
optimization problem shown in Eq. 2. Existing attacks without considering MOT directly minimize
the probability of target class (e.g., a stop sign) to erase the target from detection result. However,
as shown in Fig. 3b, such AEs are highly ineffective in fooling MOT as the tracker will still track
for R frames even after the detection bounding box is erased. Instead, the loss function of our
tracker hijacking attack incorporates two loss terms: L1 minimizes the target class probability at
given location to erase the target bounding box, where

∑B
i=0 1

obj
i identifies all bounding boxes (B)

before non-max suppression [21], who contain the center location (cxt, cyt) of pos, while Ci is the
confidence score of bounding boxes; L2 controls the fabrication of adversarial bounding box at given
center location (cxt, cyt) with given shape (wt, ht) to hijack the tracker. In the implementation,
we use Adam optimizer to minimize the loss by iteratively perturbing the pixels along the gradient
directions within the patch area, and the generation process stops when an adversarial patch that
satisfies the requirements is generated. Note that the fabrication loss L2 needs only to be used when
generating the first adversarial frame in a sequence to give the tracker an attacker-desired velocity
#»v , and then λ can be set to 0 to only focus on erasing target bounding box similar to previous work.
Thus, our attack wouldn’t add much difficulty to the optimization. Details of our algorithm can be
found in the supplementary material, and the implementation can be found at [1].

min
∆∈patch

L1(xt + ∆) + λ · L2(xt + ∆)

L1 =

B∑
i=0

1
obj
i ·[C

2
i − CrossEntropy(pi, classt)]

L2 =

B∑
i=0

1
obj
i ·{[(cxi − cxt)

2 + (cyi − cyt)2] + [(
√
wi −

√
wt)

2 + (
√
hi −

√
ht)

2]

+ (1− Ci)2 + CrossEntropy(pi, classt)}

(2)
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Figure 4: In normal measurement noise covariance range (a), our tracker hijacking attack would
require the adversarial example to fool only 2~3 consecutive frames on average to successfully
deviate the target tracker despite the (R,H) settings. Moreover we compare the success rate of
tracker hijacking with previous adversarial attack against object detectors only under different attacker
capabilities, i.e., the number of consecutive frames the adversarial example can reliably fool the
object detector (b). Tracker hijacking achieves superior attack success rate (100%) even by fooling
as few as 3 frames, while previous attack is only effective when the adversarial example can reliably
fools at least R consecutive frames.

4 Attack Evaluation

In this section, we describe our experiment settings for evaluating the effectiveness of our tracker
hijacking attack, and comparing it with previous attacks that blindly attack object detection in detail.

4.1 Experiment Methodology

Evaluation metrics. We define a successful attack as that the detected bounding box of target object
can no longer be associated with any of the existing trackers when attack has stopped. We measure
the effectiveness of our track hijacking attack using the minimum number of frames that the AEs on
object detection need to succeed. The attack effectiveness highly depends on the difference between
the direction vector of the original tracker and adversary’s objective. For example, attacker can cause
a large shift on tracker with only one frame if choosing the adversarial direction to be opposite to its
original direction, while it would be much harder to deviate the tracker from its established track,
if the adversarial direction happens to be the same as the target’s original direction. To control the
variable, we measure the number of frames required for our attack in two previous defined attack
scenarios: target object move-in and move-out. Specifically, in all move-in scenarios, we choose the
vehicle parked along the road as target, and the attack objective is to move the tracker to the center,
while in all move-out scenarios, we choose vehicles that are moving forward, and the attack objective
is to move the target tracker off the road.

Dataset selection. We randomly sampled 100 video clips from Berkeley Deep Drive dataset [33],
and then manually selected 10 suitable for the object move-in scenario, and another 10 for the object
move-out scenario. For each clip, we manually label a target vehicle and annotate the patch region to
be a small area at the back of it as shown in Fig. 3c. All videos have the same frame rate of 30 fps.

Implementation details. We implement our targeted visual perception pipeline using Python, with
YOLOv3 [24] as the object detection model since it is among the most popular detectors used by
real-time systems. For the MOT implementation, we use the Hungarian matching implementation
called linear_assignment in the sklearn package for the data association, and we provide a
reference implementation of Kalman filter based on the one used in OpenCV [22].

The effectiveness of attack depends on a configuration parameter of Kalman filter, called measurement
noise covariance (cov). cov is an estimation about how much noise is in the system, a low cov value
would give Kalman filter more confidence on the detection result at time t when updating the tracker,
while a high cov value would make Kalman filter to place trust more on its own previous prediction at
time t− 1 than that at time t. We give a detailed introduction of configurable parameters in Kalman
filter in §2 of our supplementary material. This measurement noise covariance is often tuned based
on the performance of detection models in practice. We evaluate our approach under different cov
configurations ranging from very small (10−3) to very large (10) as shown in Fig. 4a, while cov is
usually set between 0.01 and 10 in practice [3, 13].

7



4.2 Evaluation Results

Effectiveness of tracker hijacking attack. Fig. 4a shows the average number of frames that the
AEs on object detection need to fool for a successful track hijacking over the 20 video clips in the
evaluation. Although a configuration with R = 60 and H = 6 is recommended when fps is 30 [37],
we still test different reserved age (R) and hit count (H) combinations as real-world deployment are
usually more conservative and use smaller R and H [3, 13]. The results show that tracker hijacking
attack only requires successful AEs on object detection in 2 to 3 consecutive frames on average to
succeed despite the (R, H) configurations. We also find that even with a successful AE on only one
frame, our attack still has 50% and 30% success rates when cov is 0.1 and 0.01 respectively.

Interestingly, we find that object move-in generally requires less frames compared with object
move-out. The reason is that the parked vehicles in move-in scenarios (Fig. 2b) naturally have a
moving-away velocity relative to the autonomous vehicle. Thus, compared to move-out attack, move-
in attack triggers a larger difference between the attacker-desired velocity and the original velocity.
This makes the original object, once recovered, harder to associate correctly, making hijacking easier.

Comparison with attacks that blindly target object detection. Fig. 4b shows the success rate of
our attack and previous attacks that blindly target object detection, which we denote as detection
attack. We reproduced the recent adversarial patch attack on object detection from Jia et al. [36]
in 2018, which targets the autonomous driving context and has validated attack effectiveness using
real-world car testing. In this attack, the objective is to erase the target class from the detection
result of each frame. Evaluated under two (R,H) settings, we find that tracker hijacking attack
achieves superior attack success rate (100%) even by attacking as few as 3 frames, while the detection
attack needs to reliably fool at least R consecutive frames to guarantee success. When R is set to 60
according to the frame rate of 30 fps, the detection attack needs to have an adversarial patch that can
constantly succeed at least 60 frames while the victim autonomous vehicle is driving. It translates to
an over 98.3% ( 59

60 ) AE success rate, which has never been achieved or even got close to in previous
work [35, 9, 6, 15]. Note that the detection attack still can have up to ~25% success rate before R.
This is because the detection attack causes the object to disappear for some frames, and when the
vehicle heading changes during such disappearing period, it is still possible to cause the original
object, when recovered, to misalign with the tracker predication in the original tracker. However,
since our attack is designed to intentionally mislead the tracker predication in MOT, our success rate
is substantially higher (3-4×) and can reach 100% with as few as 3 frames attacked.

5 Discussion and Future Work

Implications for future research in this area. Today, adversarial machine learning research target-
ing the visual perception in autonomous driving, no matter on attack or defense, uses the accuracy
of objection detection as the de facto evaluation metric [18]. However, as concretely shown in our
work, without considering MOT, successful attacks on the detection results alone do not have direct
implication on equally or even closely successful attacks on the MOT results, the final output of the
visual perception task in real-world autonomous driving [3, 13]. Thus, we argue that future research
in this area should consider: (1) using the MOT accuracy as the evaluation metric, and (2) instead
of solely focusing on object detection, also studying weaknesses specific to MOT or interactions
between MOT and object detection, which is a highly under-explored research space today. This
paper marks the first research effort towards both directions.

Practicality improvement. Our evaluation currently are all conducted digitally with captured video
frames, while our method should still be effective when applied to generate physical patches. For
example, our proposed adversarial patch generation method can be naturally combined with different
techniques proposed by previous work to enhance reliability of AEs in the physical world (e.g.,
non-printable loss [26] and expectation-over-transformation [2]). We leave this as future work.

Generality improvement. Though in this work we focused on MOT algorithm that uses IoU based
data association, our approach of finding location to place adversarial bounding box is generally
applicable to other association mechanisms (e.g., appearance-based matching). Our AE generation
algorithm against YOLOv3 should also be applicable to other object detection models with modest
adaptations. We plan to provide reference implementations of more real-world end-to-end visual
perception pipelines to pave the way for future adversarial learning research in self-driving scenarios.
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6 Conclusion
In this work, We are the first to study adversarial machine learning attacks against the complete visual
perception pipeline in autonomous driving, i.e., both object detection and MOT. We discover a novel
attack technique, tracker hijacking, that exploits the tracking error reduction process in MOT and can
enable successful AEs on as few as one frame to move an existing object in to or out of the headway
of an autonomous vehicle to cause potential safety hazards. The evaluation results show that on
average when 3 frames are attacked, our attack can have a nearly 100% success rate while attacks that
blindly target object detection only have up to 25%. The source code and data is all available at [1].

Our discovery and results strongly suggest that MOT should be systematically considered and
incorporated into future adversarial machine learning research targeting the visual perception in
autonomous driving. Our work initiates the first research effort along this direction, and we hope that
it can inspire more future research into this largely overlooked research perspective.
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