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Abstract—The trend of supporting wide vector units in general
purpose microprocessors suggests opportunities for developing a
new and elegant compilation approach to mitigate the impact
of faults to cryptographic implementations, which we present
in this work. We propose a compilation flow, CAMFAS, to
automatically and selectively introduce vectorization in a crypto-
graphic library - to translate a vanilla library into a library with
vectorized code that is resistant to glitches. Unlike in traditional
vectorization, the proposed compilation flow uses the extent of
the vectors to introduce spatial redundancy in the intermediate
computations. By doing so, without significantly increasing code
size and execution time, the compilation flow provides sufficient
redundancy in the data to detect errors in the intermediate
values of the computation. Experimental results show that the
proposed approach only generates an average of 26% more
dynamic instructions over a series of asymmetric cryptographic
algorithms in the Libgcrypt library.

I. INTRODUCTION

Instruction duplication and triplication countermeasures

(herein after ”instruction redundancy”) [1] are well established

Instruction Set Architecture (ISA) mitigations against fault

attacks. Instruction duplication executes each instruction of

a cryptographic algorithm twice and compares the results

from both runs to detect the occurrence of a fault. This

countermeasure takes advantage of time-based redundancy. It

assumes that the original instruction and its duplicate will not

be affected by the same faults. Hence, the presence of a fault

can be detected.

Albeit relatively more appealing in performance to cost ratio

than more recent hardware countermeasures [2], instruction

duplication suffers from more than 2x instructions (e.g.,

duplicates and error checks) when instructions are duplicated

in a naı̈ve manner. Thus the protected algorithms still suffer

from high performance and (also) code size overheads. In ad-

dition, the extra instructions may also induce register pressure.

Combined with these effects, as reported in [1], instruction du-

plication can cause up to 3.4x times performance slowdown.

Yuce et al. [3] have shown that instruction duplication, tripli-

cation etc, can be thwarted by leveraging artifacts of pipelined

execution. Specifically, due to the asymmetry in the critical

path of instructions, Yuce et. al. have shown the possibility

of injecting a single or multiple glitches at certain pipeline

stages, and that the fault propagates through the critical path

of the affected instructions in a way to bypass instruction

duplication (and triplication) countermeasure. To fully utilize

the benefits provided by some form of instruction duplication,

a more sophisticated mechanism is therefore necessitated.

This paper proposes to enable operation duplication by

leveraging at its essence the single instruction multiple data

(herein after ”SIMD”) extensions of modern microprocessors.

SIMD extensions are ubiquitous in most commercial general

purpose microprocessors, and the major manufacturers, such

as Intel, IBM, and ARM suppliers, are apt to build increasingly

larger vector units in new processor generations. SIMD exten-

sions use a distinct set of instructions and operate on wider

registers to complete multiple operations in parallel. When it

comes to cryptographic implementations, the customary use

of SIMD resources is to increase performance by leveraging

the maximum amount of data parallelism available in a cipher

through mapping the algorithm statements into vector state-

ments manually, e.g., in the OpenSSL library.1

This work presents a compilation approach, CAMFAS, which

harnesses these available SIMD extensions to mitigate fault

attacks. The proposed approach attempts to gain instruction

redundancy for free, achieving both operation and data du-

plication. In this regard, CAMFAS is new, because it differs

from both the traditional approach to code vectorization (here

in after “SIMDization”), as well as the traditional approach

to introduce instruction level countermeasures against fault

attacks. The process essentially migrates the execution of

most instructions from the scalar unit to the vector unit,

and effectively transforms instruction redundancy into data

redundancy. For example, in the case of instruction dupli-

cation, instead of running the original instruction and its

copy sequentially as it was adopted in the prior art, CAMFAS
vectorizes these two instructions and packs them into a SIMD
register for execution. Error checking is then performed on

the vectorized instruction for fault detection. To the best of our

knowledge, this is the first work that exploits SIMD extensions

to protect cryptographic algorithms against fault attacks, and

trade-off resistance against fault-attacks with throughput in the

cryptographic operations.

CAMFAS is fully implemented and automated in the LLVM

compiler infrastructure [4]. Similarly to the state-of-the-art

time-based instruction duplication techniques, e.g., [1], our

SIMDization based countermeasure doesn’t need to be aware

1https://software.intel.com/en-us/articles/improving-openssl-performance
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of any detail about the algorithm implementation. In addition,

it delivers the following improvements.
First, previous instruction duplication directly inserts coun-

termeasures into the code obtained via disassembling the

executable object code for redundancy purposes. In the cir-

cumstance that the cryptographic code is inaccessible, this ad
hoc solution is perhaps the only way to duplicate instructions.

However, most assembly cannot be duplicated trivially, e.g.,

when a register is present as both the source and the desti-

nation. An expert has to judiciously save the temporary result

into an unused register so that the content in the reused register

will not be overwritten by the redundant computation. Thus

duplication at the assembly level needs a considerable amount

of expert effort. Therefore, the work of Barenghi et al. [1]

only covers a small fraction of assembly instructions in the

AES block cipher.
Our SIMDization based instruction redundancy strategy

resorts to compilation techniques to trade-off throughput

(achievable by taking full advantage of the available vector

length) with resistance to fault attacks. It focuses on the

intermediate representation (IR) level, which is after the front-

end optimizations, but before register allocation and code

generation. Replicated instructions and error checking code

are inserted automatically without any manual intervention

during the traversal of an IR form. Then the fault tolerant code

generation is left to the back-end of the compiler. Our work

avoids the tedious and error prone assembly programming,

yet still preserving all compiler optimizations. Portability is

another important benefit of introducing mitigations at the IR

level, since the IR is normally target independent.
Second, CAMFAS converts instruction duplication to op-

eration/data duplication so repeating executions are avoided

for individual instructions. This conversion effectively exploits

spatial redundancy at the granularity of an instruction rather

than exploiting the temporal redundancy as in [1], which is

vulnerable to the single fault injected at certain pipeline stages

[3].
Third, even though additional instructions may be needed

to pack/unpack data into/from vector registers, CAMFAS par-

allelizes the execution of the original instruction and its

duplicate thus leading to the significantly reduced code size

and better performance.
Fourth, CAMFAS has lower register pressure because no

extra registers are needed by the replicate.
In our experiments, we have applied CAMFAS to crypto-

graphic algorithms in the Libgcrypt library.2 The fault injection

experiments demonstrate that our approach is able to deliver

nearly full fault coverage with much reduced overhead. Fur-

thermore, on average the mitigated cryptographic algorithms

execute 2.2x slower and impose an average of 26% more

dynamic instructions compared to unmitigated code.

II. FAULT MODEL

This work considers an attacker capable of injecting

glitches, as in [5], [6], which could corrupt data and/or

2https://www.gnupg.org/software/libgcrypt/index.html
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Fig. 1: CAMFAS compilation flow for introducing SIMDization

based approach for fault detection in cryptography.

instruction (mainly instruction skipping). For data corruption,

the main focus of this work, fault types that apply to our

approach include:

• Single Random Bit-Flip: The fault injection induces bit-flip

in a random position in a register.

• Multiple Random Bit-Flips at different elements in a SIMD
Register: Multiple faults are injected into the same SIMD

register but at different elements of it - it is easy to prove

that this type of fault can occur with a negligible probability

which further decreases with the vector length. Multiple

faults that are injected to identical positions different vector

lanes are not considered in this paper because it is much

more difficult to inject these type of faults [1].

An attacker can skip an instruction or replace it with

an effective nop. The error checking code, or particularly

the error checking branch instruction, might be targeted by

adversaries to thwart the inserted countermeasures. We refer to

literature to mitigate this case. For example, in [7], instructions

are rearranged so that the vulnerable branch instruction is

followed by a default-fail error handling module.

III. COMPILATION FLOW FOR FAULT DETECTION IN

CRYPTOGRAPHY

Figure 1 depicts the compilation flow implementing

CAMFAS for fault tolerant code generation in cryptography.

The instruction redundancy pass in Figure 1 handles the

Intermediate Representation IR files in three steps: (a) in-

struction identification and redundancy; (b) error checking

code insertion; and (c) scalar code deletion. The transformed

IR files are then passed to the LLVM back-end for further

optimizations and register allocation before generating the

fault tolerant executable.

Note that, although the countermeasures in the rest of the

paper will only focus on fault detection, CAMFAS can be

extended to support fault correction by triplicating the data

in a SIMD register and performing majority voting among

the resultant values. The correction can be implemented as

a standalone module invoked on fault detection.

The compilation framework is expected to be applicable to

all LLVM supported architectures with SIMD instruction set

extension (e.g., Intel, AMD, ARM-based, etc.), as it focuses

on the IR form of the source files which is normally platform

independent. For illustrative purpose, this work illustrates an

application of CAMFAS to Intel SSE and AVX/2 SIMD instruc-

tion set extensions, and to the case of instruction duplication.
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A. Application of the framework to Instruction Duplication

In this section we present how CAMFAS handles vector

based instruction duplication. The first step of our imple-

mented LLVM pass is to traverse each individual IR instruc-

tion. This step determines if it is necessary to duplicate a

discovered instruction during the traversal. If so, a vector

instruction that contains two exact copies of the data used by

the original instruction will be inserted to replace the original

one. The framework copes with different instruction categories

as follows:

• Arithmetic, logic, and shift/rotate instructions: These IR
instructions are directly duplicated via an equivalent vector

instruction and the result is saved in a vector intermediate

register. Figure 2 shows the transformation of a scalar

arithmetic operation (on the top) to its alternative SIMD
form (at the bottom). A’ is the replica of data A that can be

either loaded from the memory or computed by preceding

instructions.

A A' B B' C C'=x

A B C=x

Fig. 2: Duplicate and vectorize scalar arithmetic isnstructions.

• Memory instructions: CAMFAS protects all load and store

addresses by using gather and scatter instructions to du-

plicate memory access computation. A gather instruction

effectively eliminates the extra load used in the previous

scalar instruction duplication. Researchers in [3] have ob-

served that the original load and its duplicate can be present

at two adjacent pipeline stages at the same cycle, i.e., one

is at the register access stage and the other is at the execute
stage, where only a single fault injected might corrupt these

two loads simultaneously. However, our duplication avoids

executing identical loads sequentially. It thus makes the

countermeasure resistant to the above single fault injection.

Not only memory addresses can be protected, memory

contents can also be hardened. For instance, we can replicate

the public key (e.g. with size S) stored at memory address

M on its continuous memory starting from M+S. Instead of

loading the value A at address M+offset, we gather a pair

of values A from address M+offset and A’ from address

M+offset+S and then pack them into a SIMD register as

shown in Figure 3(a). A comparison is then performed to

validate the equivalence of these two values to check if the

loaded memory content is corrupted.

Similar operations can be performed to protect stores as

well using scatter instructions as represented by the

right side of Figure 3. However, we would have to read

back the two values stored by a scatter instruction to testify

if there was a fault injected to the content at one of the

particular memory addresses, which requires another gather

instruction and one more comparison. These procedures

enable countermeasure on loads and stores at the cost of

high performance overhead because gathers and scatters

normally require much more μops than a mov instruction.

To avoid the prohibitively expensive cost, we only protect

memory addresses and gather the value from (e.g., A) the

same memory location into a SIMD register in this paper.

Duplication and verification of memory contents are left as

future work.

...

A A'

A

A'm
em
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y

(a) (b)
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reg
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Fig. 3: Memory instruction duplication using (a) gather, (b)

scatter.

• Branch instructions: All comparison instructions are dupli-

cated since their SIMD alternatives are supported by SIMD
instruction extensions, thus branch conditions are also pro-

tected. Attacks on branch instructions that change the branch

target are not counteracted directly in our approach due to

three reasons. First, existing signature-based techniques, e.g.

[8], [9], can be employed to guard the integrity of control

flows. Second, data integrity faults are more important in

cryptographic applications since crypto algorithms usually

consist of xor and shift instructions. Third, fault attacks

mostly exploit the corrupted data result (DFA) rather than

the control flow. Our goal is to defeat fault attacks, hence

it is more important to consider data integrity instead of

control flow integrity.

• Function calls: Function calls are tackled differently de-

pending on if it is a subroutine call or a library call. Subrou-

tine calls are not duplicated since instructions in the callee

will have their own replicates. The majority of mathematic

library calls are duplicated using their vector forms since

LLVM has an array of vector compatible intrinsics to support

math library functions. We can conveniently replace a scalar

library call with its vector counterpart by extending the

size of the input data types, and the LLVM back-end will

generate the vectorized library call.

• Other instructions: Other instructions such as stack manip-

ulation instructions (e.g., push and pop) are not duplicated

because of two major reasons. First, these instructions are

not present in the IR form. Second, no equivalent SIMD
instruction exists to achieve the same purpose. Conversion

instructions are secured because LLVM IR provides us

the vector version of truncation, type conversion, and sign

extension instructions.

B. Error Checking Code Insertion

Once an instruction is duplicated and vectorized, we need

to decide if a check is required to be inserted for fault

detection. Checks can be added to various code places to

trade off the performance/code size and the fault coverage.

For example, a check can be inserted immediately after a

vectorized instruction to compare equality of the upper and
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bottom 64 bits of a resultant SIMD register. While it attains

full coverage of the attacks since all duplicated instructions are

validated, checking all duplicated instructions may overreact to

fault detection as many checks are actually superfluous. This is

because the value change in a register will generally propagate

to influence all the registers that are directly or indirectly

dependent on this register. In some cases, this change is

masked by some operations on the execution path, i.e., a shift

operation could mask all the changed bits in a register that

will be shifted out.

A' A

A A'
A=A' A'=A

reg1

reg2

Fig. 4: Error checking operation

Therefore, to leverage the fault coverage rate at the expense

of a reasonable performance and extra instruction overhead,

fault checking will be only performed at certain program

points, such as before stores, function calls, conditional

branches, etc.

Figure 4 demonstrates how a comparison is performed to

check the equivalence of the two values stored in the upper

and lower half parts of a SIMD register, reg1. First of all,

a shuffle has to be executed to swap these two values in

reg1 since there is no horizontal comparison instruction to

achieve this purpose. The shuffled result is stored in another

SIMD register, say reg2. A vector comparison is then run

to check the equivalence of the values in the corresponding

lanes of reg1 and reg2. In other words, the fault checking

requires at least four SIMD assembly instructions in the back-

end, e.g., vpshufd, vpcmpeqq, vptest, and jne. These

extra instructions will penalize the performance and instruction

count. Fortunately, checks are only inserted infrequently. We

can thus expect a reasonably low overhead.

IV. EVALUATION

This section provides an experimental evaluation of

CAMFAS. We will first inspect its capability in detecting

injected faults and then study the overhead in terms of per-

formance and the dynamic instruction count. LLVM 4.0 was

used to compile the Libgcrypt library and to add mitigations

against fault-attacks. The following cryptographic algorithms

are investigated: RSA; DSA; ELG; and ECC, this last includes

ECDSA, ED25519; and GOST. We duplicated the kernels that

are heavily used by the cryptographic algorithms, i.e., the ones

under the mpi directory in the Libgcrypt library. These kernels

perform all the required arithmetic operations for each of these

four cryptographic algorithms, e.g., addition, subtraction, mul-

tiplication, division, modulo, etc. All the results are normalized

to the originally unmodified program which is also referred to

as the baseline in this section.

A. Experimental Setup

All versions of the compiled benchmarks were executed

on the Intel x86_64 ISA with AVX-512 SIMD extension.

Specifically, the processor model is Intel Xeon Phi(TM) 7210

Knights Landing processor and 16GB memory, running Linux

4.4.0 kernel. While we experimented on Xeon Phi processor,

the proposed technique is generic and can be applied on

any target processor with vector extensions. Nowadays fault

attacks are also viable on high performance processors, as the

technology has improved for glitch or laser injection, e.g., via

VC glitcher.3
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Fig. 5: The breakdown of faults injected on each type of

instruction for different mechanisms: no fault detection (N),

duplication without gather and scatter instructions (O), dupli-

cation with gather and scatter instructions (W).

B. Fault Coverage

Now we evaluate the effectiveness of our SIMD-based fault

detection technique. The fault coverage of the original and

the vectorized binaries (both with and without gather/scatter

instructions) are analyzed by injecting faults to the correspond-

ing binaries. PIN [10] is used to achieve this in two steps.

First, we collect the full program trace via a customized Pin

tool. This step records all the executed instructions associated

with their instruction pointers (IP) and read/write registers

for every iteration of the specified functions (kernels) in the

hardened part of the program. Second, an instruction at a

random iteration is picked from the trace file before the

program starts execution again. An operand register is then

arbitrarily selected for fault injection, and finally a single bit

in a random byte of the register is flipped during the execution

of the program. Although only single-fault model is simulated

in experiments, our work is able to detect multiple flipped bits

because they will produce the same effect as a single random

fault. Recall, it is very difficult to inject identical faults to both

the original and its redundant copy.

We modified register files, including general purpose reg-

isters and floating point registers, while leaving the memory

contents untouched. We also reproduced the scenario when

one bit of a memory read address is flipped, to emulate errors

in the memory address for load instructions.

3https://www.riscure.com/security-tools/hardware/vc-glitcher
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The faulty program continues until completion and the

outcome of each run is recorded. 1000 faults were injected in

each cryptographic algorithm execution to collect the statistics.

The results are classified into one of the following four

categories by comparing to the known good outputs (e.g., the

result produced by the unmodified original binary).

• Detected: The program terminates due to the fault being

detected by our vector based error detection technique.

• Incomplete: The injected fault causes abnormal behavior of

the target binary, i.e., it may result in the infinite execution

as the error makes the loop termination condition not hold

ever, or a program with inserted countermeasures fails

because of segfaults (e.g., the injected error causes invalid

memory access) or other faults, such as double free or

corruption (i.e., the injected error propagates to cause double

free of a portion of the memory), floating point exception

(e.g., divide by zero), and bus error (i.e., the injected error

leads to misaligned address access).

• Masked: The faulty program completes normally and pro-

duces correct encrypted/decrypted results. In this case, the

injected error didn’t corrupt the program due to application

level or architectural level masking. As we will present later,

some injected errors are masked in Libgcrypt mainly due

to the wide use of bitwise operations in the algorithms.

• Corrupted: The faulty program finishes execution but it

produces a different encrypted/decrypted text compared to

the original value. In this case, the program was not aborted

during execution but verification signaled a failure in the

end. This is the case where an attack is successful since the

attacker has access to the faulty results.
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Fig. 6: Fault coverage by each cryptographic algorithm among

different mechanisms: no fault detection (N), duplication with-

out gather and scatter instructions (O), duplication with gather

and scatter instructions (W).

Libgcrypt library provides a series of self tests to make

sure that the value computed at each stage is valid for the

cryptographic algorithms. It signals a failure when a mismatch

is found between the modified data and the original data. This

case is also classified into the corrupted category because

neither our mechanism nor the system detects it. To guarantee

that each run could be finished in a reasonable amount of

time, We only used 1024-bit keys for RSA, DSA and ELG,

192-bit and 256-bit inputs for ECDSA, and 256-bit input

for GOST. A run is treated as timeout and thus goes to

the Incomplete category when it executes at least 5 times

longer than producing the masked results.

Figure 5 shows the breakdown of faults injected in each type

of the instructions for three configurations, baseline with no

fault detection (N), vector based duplication with gathers/scat-

ters (W), and vector based duplication without gathers/scatters

(O). Four major instruction categories are investigated, 1)

arithmetic instructions including logic and rotation operations,

2) memory loads (stores are excluded since checks are inserted

before them to guard the validity of address computation),

3) comparison operations including those inserted for fault

detection, and 4) the ”Other” category including instructions

that perform shuffle operations before each comparison for

error detection as described in Section III. Note that the last

category doesn’t apply to the baseline, since no such operation

exists in the original program.

Figure 5 illustrates that the baseline with no fault detection

(N) has 0 percent of instructions sitting in the “Other” category

for all of the cryptographic algorithms. For the baseline, an

average of 70% and 20% faults are injected to the arithmetic

instructions and the load instructions, respectively. Only 10%

of faults are injected to comparison instructions. However, for

CAMFAS with gathers and scatters, about 60% and 8.4% faults

are injected to arithmetic instructions and load instructions

on average, respectively. Compared to the baseline, these

two numbers are decreasing because other instructions are

introduced as countermeasures. The percentage of faults in-

jected to comparisons increases by 12% for CAMFAS with

protection of memory computation. This number is very close

to the percentage of errors injected to “Other” instructions

(e.g. 9.2%) because every error checking code requires one

shuffle instruction. We can also observe that the percentage of

errors injected to each instruction category for our duplication

without using gather and scatter instructions is close to the

case of using gather and scatters. This is because the number

of instructions for these two mechanisms are close to each

other despite that they employ different sets of instructions to

fetch data from memory, i.e., the former uses broadcast and

the later uses gather combined with a few other instructions

to prepare the mask.

Figure 6 associated with Table I shows the effectiveness of

our vector based error detection approach in detecting injected

faults. As it is tabulated in Table I, CAMFAS with memory

address protection yields negligible corrupted results. These

incorrect results are mostly caused by the errors injected to the

error checking code since this portion of code is not protected.

The percent of corrupted runs goes up to 5.37% when we don’t

check memory addresses. It is significantly reduced compared

to the baseline where an average of 23.35% runs are corrupted.

In the worst cases, the corrupted results could be up to 38%
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(ED25519).

Approach Detected Incomplete Masked Corrupted

N 0 61.65% 15% 23.35%
O 45.37% 44.43% 5.83% 5.37%
W 46.5% 49.72% 3.42% 0.36%

TABLE I: Comparison of fault coverage rates of each category

among no fault detection (N), duplication without gather and

scatter (O), and duplication with gather and scatter (W).
Not only is our technique effective in reducing the number

of corrupted results, but also it can significantly lower the

incomplete results from 61.65% to less than 50%. This effect

is particularly marked in RSA where the rate of incomplete

execution drops from 77% in the baseline to 49% in the binary

with countermeasures using gather and scatter instructions.

This is because error checking code is added before stores and

branches to validate the correctness of the store destinations

and branch conditions. This error checking may have taken

effect before abnormal program behaviors actually took place.

While effective in protecting the binary from being corrupted,

duplicating memory access addresses also moderately raises

the number of incomplete executions. The reason is the single-

bit fault in memory address would usually result in the access

of unmapped memory region which leads to a segfault.

Sometimes a binary could still finish execution despite the

injection of an error at a certain run. This can happen in

cryptographic algorithms since some of the developed kernels

contain operations such as and, or, etc. The result of these

operations might not depend on the value of the operand

where a fault is injected. However, the number of masked

runs falls from 15% in the baseline to 3.42% and 5.83%

in our duplicated versions with and without gathers/scatter,

respectively.

Most of the decreased numbers from the above three

categories come into the detected category, i.e., more

than 45 percent of the faults are detected by CAMFAS. The

difference between the error detection rate of using and not

using gather/scatter instructions is minimal, e.g., less than

1.2%. This is because a majority of errors injected in memory

addresses are turned into segfaults as discussed above.

C. Fault Attack Prevention Discussion

There are different categories of fault attacks on cryptosys-

tems that are divided based on the assumption on the fault

model. CAMFAS detects and prevents crytposystems from the

following categories of fault attacks:

• Differential Fault Analysis (DFA): Fault Attacks in this type

consider a hypothesis on the fault injection. This hypothesis

is usually a single bit-flip, random byte, or random bit-

flip. The adversary is then required to capture correct and

faulty cipher texts and reverse engineer the differential to

obtain the secret key. CAMFAS detects DFA attacks because

based on the results provided in Figure 6, the number of

“Incorrect” outputs has reduced from 23.35% to 0.36%.

• Differential Fault Intensity Analysis (DFIA) [6]: Unlike

other fault attacks, DFIA does not rely on a fault model

hypothesis. It relies on the bias of fault behavior and the

differential of faulty outputs. Since CAMFAS prevents the

faulty output from being propagated, it is able to effectively

prevent DFIA.

• Single-Glitch Attacks: [3] has proposed some hardware

based microprocessor fault attacks that rely on different

scenarios of fault injection. Yuce et.al, have proposed a

framework, by inspecting fault sensitivity characterization,

in which the adversary is able to find scenarios to thwart

redundancy techniques. In case of these attacks, as provided

in Section II, the possibility of corrupting the original and its

duplicate is low which eliminates the case of scenario 1. We

still believe that Scenario 2 and 3 might be possible based

on the underlying microprocessor platform. However, since

the comparison of the original and the duplicate copy is at

the IR level, an accurate fault injecting into the vulnerable

points in the pipeline to modify comparison instruction to

nop will be more difficult.

D. Fault Detection Overhead

The performance and code size overhead caused by the

virtually full coverage of our inserted countermeasures will

be examined in this section.

Performance overhead. Figure 7 shows the performance

slowdown of our vector based error detection on RSA, DSA,

ELG, and ECC algorithms with different input sizes compared

to the baseline. The input sizes for RSA, DSA, and ELG are

1024, 2048, and 3072 bits, respectively. The input for ECDSA

are 192, 256, and 384 bits. GOST is tested with 256- and 512-

bit keys. Two groups of experiments were conducted. One

duplicates load and store addresses using gather and scatter

alternatives. The other, instead of using gathers and scatters,

loads the content in an address and broadcasts it to fill a SIMD

register. In Figure 7, a “private/public with g/s” bar represents

the slowdown of a vectorized benchmark with gather/scatter

instructions over the baseline counterpart when computing the

private/public key. A “private/public without g/s” bar indicates

the slowdown without using gather/scatter instructions.

The average slowdowns of the instruction duplicated cryp-

tographic algorithms are 2.2x for computing both the private

and the public key when gather/scatter instructions are used to

duplicate the memory addresses. The slowdowns are mainly

attributed to the following facts.

First, there is no vector form of integer division and quad-

word multiplication instructions. Therefore, all these division

and multiplication operations are performed as scalars that

require unpacking the upper and bottom quadwords from a

SIMD register. After unpacking, two scalar divq/mulxq
instructions are executed sequentially to obtain the upper and

bottom quadword values. These two values are packed into a

SIMD register using vpunpcklqdq instruction in the end.

The whole process needs at least 7 instructions, therefore

causing high performance overhead.

Second, extra instructions are needed for error detection

beside comparison and test instructions. For example, we have

to swap the upper and bottom quadwords before a comparison
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Fig. 7: The slowdowns of error detection enabled cryptographic algorithms to compute private and public keys compared to

the original ones without error detection for different input sizes.
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Fig. 8: The dynamic instruction count overhead for duplication

with and without gather/scatter instructions.

for error checking since there is no direct way to check the

equivalence of them.

Third, most vector instructions are more expensive than their

scalar counterparts on Knights Landing processors in terms

of latency, although the number of micro operations from the

decoder might be the same. For instance, all vector instructions

have a latency of at least 2 clock cycles on the Knights Landing

processor, while their scalar alternatives on general purpose

registers usually have a latency of 1 clock cycle [11].

The overhead reduces to an average of 1.7x for both private

and public key computation if load/store addresses are not

duplicated (except the ones computed by previous arithmetic

operations) using gather/scatter instructions. This is because

gather and scatter instructions are very costly on most of

Intel processors, i.e., vpgatherqq instruction needs 18 and

15 clock cycles on Skylake and Broadwell [12], respectively.

At least the same latency would be expected on the Knights

Landing processor because it needs 6 micro operations (μops)

vs 5 on Skylake [11].

Dynamic instruction count overhead. Figure 8 exhibits

the total instruction count for our instruction duplication

techniques with and without gather and scatter instructions,

where the numbers are normalized to the baseline. The

normalized instruction counts show a geometric mean of

1.26 when gather/scatter instructions are used to duplicate

memory addresses, while this number is only 1.13 when

gathers/scatters are not used. However, traditional instruction

duplication would generally require at least twice as much

as instructions for duplication. Therefore, our vector based

instruction duplication approach is able to efficiently detect

attacks only at an insignificant instruction count overhead

across the public key cryptographic algorithms. Furthermore,

these numbers provide more justification for some facts that

are given in the previous performance overhead experiment.

First, using gathers and scatters to duplicate memory address

computations only requires 13% percent more extra instruc-

tions (e.g., kmovw to set write mask registers) compared to

the one that doesn’t protect memory address computations.

Recall that, compared to the baseline, the average performance

slowdown values of the versions where memory address

calculations are hardened and not hardened are around 2.2x

and 1.7x, respectively. The results altogether corroborate that

gathers and scatters are expensive operations that primarily

contribute to the additional performance degradation.

Second, the dynamic instruction count grows dispropor-

tionally to the increase in performance overhead shown in

Figure 7. This is consistent to the fact that integer vector

instructions are generally much more expensive than their

scalar counterparts on the Knights Landing processor.

Another interesting observation is that the variations of the

dynamic instruction count for each bar in Figure 8 are small for

both cases. For instance, the instruction count overhead ranges

from 21% to 29% percent from duplication with gathers and

scatters, and it is from 6% to 22% when gathers/scatters are

not used.

V. RELATED WORK

Recent prior art focused on specific hardware approaches to

implement fault detection and mitigation [13], [5]. Hardware
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based techniques usually have to duplicate the hardware cir-

cuits, repeatedly execute a computation, and verify the results

from both computations using a specific hardware unit. This

type of countermeasures is quite costly in both application

performance and hardware areas, plus end users are generally

not able to modify off-the-shelf hardware.

In contrast, software countermeasures provide more flexi-

bility and portability than hardware techniques as they don’t

require any underlying hardware modification. Prior art on

software based countermeasures propose mitigations either at

the algorithm level [14], [15] or at the instruction level [1],

[2] to hinder consistent fault injection.

Algorithm level countermeasures run a cryptographic algo-

rithm twice and then compare the outcomes of both runs to

check their equivalence. A fault is detected once a mismatch is

signaled. These fault detection mechanisms focus on a coarse

granularity, e.g., high level algorithms. The mitigations are

not aware of the low-level architectural and hardware details.

While easy to implement, countermeasures at this level are

prone to break by injecting identical faults to the same data

across repeated executions [3].

With the assumption that injecting consecutive faults in

subsequent instructions in a single cycle is infeasible, in-

struction level fault detection techniques concentrate on a

much finer granularity, e.g., each individual instruction. These

mechanisms attempt to counteract faults through duplicating

instructions, repeating execution, and comparing the results

from the original instruction and the redundant one. Instruction

duplication is believed to be able to reach full error coverage,

plus it is generally quite portable. However, the downside of

it is the relatively high performance overhead, e.g., more than

3.4x in [1], and instruction size overhead since they need to

execute at least as twice as many instructions. Another side-

effect of instruction duplication is the increased number of

registers which may bring high register pressure.

Considering the pros and cons of instruction duplication,

we take a step forward to make these techniques less costly

but still preserve their benefits by taking advantage of SIMD

features from modern processors. Rather than duplicating and

executing two identical instructions sequentially, our approach

vectorizes the original instruction and its replicate using a

SIMD register. It effectively converts operation duplication

into data duplication, therefore obtaining fault tolerance with

minimal overhead.

Pabbuleti et al. has looked into SIMD units to accelerate

modular multiplications in prime fields [16], but they didn’t

address the fault tolerance problem. Chen et at. proposed a

compilation framework to utilize SIMD resources for fault

tolerance [17]. They attempted to protect processors against

soft errors by duplicating instructions into SIMD registers, but

no memory address computation was protected. To our best

knowledge, this is the first work that trades off performance

and fault countermeasures using SIMD units.

VI. CONCLUSION

This work proposes CAMFAS, a new compiler flow for fault

tolerance in cryptography using vectorization. The proposed

technique exploits the underutilized vector resources on pro-

cessors for redundancy purposes. CAMFAS was implemented

in the LLVM compiler infrastructure. It automates the insertion

of instruction redundancy in cryptographic code. In addition,

the compiler oriented countermeasure converted the traditional

temporal redundancy based instruction duplication into spatial

redundancy with relatively low performance and code size

overhead. The experimental result showed that our proposed

approach only required up to an average of 26% more dynamic

instructions compared to the originally unprotected crypto-

graphic algorithms, but it achieved almost full fault coverage.
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