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ABSTRACT Since 2006, there have been significant advances in deep learning algorithms, and they have
shown superior performance in audio and image processing. In this paper, we explore the feasibility of apply-
ing deep learning algorithms to branch prediction. We treat branch prediction as a classification problem
and compare the effectiveness of deep learning with existing branch predictors. We make several interesting
observations from our study. The first is that for branch prediction, the deep learning algorithm based on deep
belief networks outperforms the prior work, but only outperforms state-of-the-art branch predictors, such as
the TAgged GEometric length (TAGE) predictors, for several benchmarks. Compared with the much simpler
perceptron branch classifier, the deep learning classifier reduces the average misprediction rate by 3%–4%
for the benchmarks in this paper. Second, we analyze the impact of the length of hashed program counter,
local history register, global history register, and branch global addresses of deep learning classifiers on the
misprediction rate. Our results show that an adaptive length of the history information is a better choice than
the longest history. Third, compared with TAGE, the hardware budget of our model is less than 1% of the
TAGE predictor.

INDEX TERMS Branch predictor, perceptron, misprediction rate, DBN, deep learning.

I. INTRODUCTION
In a processor pipeline, control hazards may occur if the
next fetched instruction differs from the outcome of a
branch. Because of the high frequency of branch instructions
in a program, branch prediction is widely used to eliminate
the pipeline bubbles due to control hazards. Given the trend
of deeper pipelines and larger instruction windows as well as
the emphasis on energy efficiency, branch prediction is a vital
component of a microprocessor.

Given the importance, branch prediction has been studied
extensively. Among the proposed branch predictors in the last
five Championship Branch Prediction (CBP) competitions,
most are variants of the TAgged GEometric length (TAGE)
and perceptron branch predictors. The success of perceptron-
based predictors confirms that neural networks can be useful
in branch prediction. However, only a few works explored
more advanced machine learning methods on branch predic-
tion [1]. Given the recent remarkable advances in machine
learning, deep learning in particular, it is worthwhile to exam-
ine whether the more advanced deep neural networks can
discover new possibility for branch prediction.

This paper explores the feasibility of applying deep learn-
ing in branch prediction. We treat branch prediction as a
classification problem, and compare the effectiveness of deep

learning algorithms with state-of-the-art branch predictors.
We make several interesting observations from our study.
First, we confirm that deep learning outperforms perceptron
in terms of classification ability. By comparing different
neural network structures, we find deep learning is a good
choice for branch prediction. Second, we analyze the impact
of the different lengths of hashed PC address.We also analyze
the impact of the length of history information, including
the local history register (LHR), the global history regis-
ter (GHR), and global addresses (GA) [2], which means the
most recently executed branch addresses, on the mispredic-
tion rate of deep learning classifier. Our simulation results
show that the longest LHR, GHR, and GA do not always
lead to the lowest misprediction rate for deep learning based
predictors. We found DBN predictor show lower mispredic-
tion rate than state-of-the-art branch predictors only for sev-
eral benchmarks. At last, compared to TAGE, the hardware
budget of our model is less than 1% of the TAGE predictor.

The rest of the paper is organized as follows: Section 2 dis-
cusses the state-of-the-art branch predictors, TAGE and
perceptron, in particular. Section 3 reviews the concepts of
deep learning and perceptron. Section 4 describes our simula-
tion methodologies and benchmarks. In Section 5, we present
the comparison results and analysis of deep learning and
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other related predictors. Section 6 concludes and discusses
the future work.

II. STATE OF THE ART BRANCH PREDICTOR
The TAGE branch predictor is often considered as the lowest
misprediction rate branch predictor. TAGE is derived from
Seznec’s GEHL predictor [3] and Michaud’s tagged PPM-
like predictors [4]. One key advantage of TAGE predictors
over other predictors is to use a geometric series of history
lengths for prediction. It enables the predictor to explore the
correlation between branches and very long history lengths,
while allocating most of the hardware resource to the short-
length prediction components. Another key aspect of TAGE
is that it uses tag-matches when accessing each prediction
component to reduce aliases.

TAGE predictors have also been enhanced by adding
prediction components targeting a specific type of hard-to-
predict branches. For example, TAGE-SC-L [5] improves the
TAGE by adding a statistical corrector predictor and a loop
predictor [6], [7]. The idea of a statistical corrector predictor
is to revert the prediction of the TAGE when it statistically
mispredicted in similar branch circumstances. The loop pre-
dictor targets at loop branches and uses the loop counts to
make accurate predictions.

Recently, Seznec and Michaud [8] further improved the
TAGE misprediction rate via a Multi-poTAGE predictor.
It combines multiple TAGE predictors and the final predic-
tion is selected from these predictors via a combined output
lookup table (COLT) predictor [9]. Each TAGE component
takes a different combination of history, including both global
and local history as input. This colossal multiple-TAGE pre-
dictor is unrealistic and used to push the lower bound of
misprediction rate of TAGE-like predictors.

Another type of state-of-the-art branch predictors [10] is
the perceptron predictor. It uses a single-layer perceptron,
one of the simplest neural networks to learn the correla-
tion between the branch history and branch outcomes. The
predictor builds a perceptron table which is indexed by the
branch PC. Each entry in the table consists of a set of weights.
When making a prediction, the predictor first computes the
output as the dot product of the input (i.e., history bits) and
the indexed weights. Then the sign of the output provides
the final prediction. After branch resolved, if it is mispre-
dicted or the output is smaller than a pre-defined threshold,
the selected weights will be trained. It trains each weight via
adding the product of the corresponding input bit and the
branch outcome. This training policy effectively strengthens
the weights corresponding to the inputs with strong correla-
tion with the outcome. Unfortunately, such a naïve single-
layer perceptron is only capable of learning linear-separable
branches. In order to overcome this shortcoming, different
variations have been proposed. The piecewise perceptron [11]
adds one more dimension to the perceptron table-global his-
tory address corresponding to the address of each bit in
the global history. However, both perceptron and piecewise
perceptron imply that a weight can only be assigned to a

single history bit or history address. It means the complexity
of the output computation grows linearly with the number of
bits in the global history. Tarjan and Skadron [12] proposed
that this effect could be eliminated by a hashed perceptron,
in which multiple history bits are hashed to a single weight.

III. PERCEPTRON AND DEEP LEARNING
Perceptron is one of the simplest neural network models.
It is a linear classifier algorithm for supervised classifica-
tion [13]. Many branch predictors achieve low mispredic-
tion rate by correlative perceptron classifiers [14]–[17]. With
recent advances in deep learning showing highly impressive
misclassification rate for image or audio based processing,
in this work, we study the feasibility of applying deep learn-
ing algorithms to branch prediction.

Deep learning is a set of algorithms to train and utilize
multi-layer neural networks. The deep hierarchical architec-
ture tries to extract and represent the high-order features
of the training data. However, traditional machine learning
algorithms, such as back-propagation, are inadequate in train-
ing such a deep architecture because of the high probability of
falling into poor local optima. To deal with the complexity of
training deep networks, Hinton et al. [18] proposed the Deep
Belief Networks (DBN) [19] and an efficient way to train
the network [20]. A DBN [21]–[23] is composed of several
stacked restricted Boltzmann machines (RBMs). It first uses
unlabeled data to pre-train the network layer by layer using
contrastive divergence [24] learning on every RBM. This
step [25], [26] is a way of unsupervised feature learning.
After pre-training, global training algorithms such as back-
propagation are used to fine-tune weights in the network.

FIGURE 1. A popular DBN structure (WN is the weight between two
layers).

A commonly used DBN [27] structure has four RBM
layers and an output layer, as shown in Fig. 1. The number
of neurons in Layer 1 is around 1/3 ∼ 2/3 of the inputs.
Similarly, the number of neurons in Layer 2 is around
1/3 ∼ 2/3 of Layer 1. Layer 3 has the same size as Layer 1,
and Layer 4 has the same size as the input layer. The last
layer is the output layer, which is constructed as a simple
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TABLE 1. Benchmarks.

single-layer neural network, i.e., a perceptron. Although the
network has 4 RBM layers, the training process is not exceed-
ingly complex. Only W1 and W2 will be trained. W3 and W4
are the transposes ofW2 andW1 as in shown Fig. 1. The basic
idea of DBN is that through layer-wise training the neural
network, the input data is reconstructed in the last RBM
layer (Layer 4 in Fig. 1) with the minimum reconstruction
error. In an ideal case, if Layer 4 keeps all the information
of the input data, which means the system does not intro-
duce any information distortion, any inner layer between the
input layer and output layer is another representation of the
input. In other words, inner layers automatically extract some
high-order features of the data since they have less neurons
than the input vector. However, in reality, the information
will distort layer-by-layer during the training process. From
the input layer to Layer 2, the number of neurons reduces
exponentially. This enforces Layer 2 to lose some infor-
mation of the original data. From Layer 2 to Layer 4, the
original data is reconstructed from low-dimensional layers
while keeping the reconstruction error small. As a result, only
the feature information, which is necessary to reconstruct the
original data, will be preserved.

IV. EVALUATION METHODOLOGY
In order to evaluate various algorithms for branch prediction,
we adopt the simulation framework provided in the
4th Championship Branch Prediction [28]. The framework
is based on trace-driven simulation and features 20 short
benchmarks, which are grouped into 4 categories: I (integer),
F (floating point), M (multimedia) and S (server). Each
benchmark contains approximately 30 million instructions,
including both user and system activities. In this work,
we focus on the conditional branches from each trace as

FIGURE 2. Average misprediction rate of perceptron (pcptrn), B-P NN, and
DBN on the short traces.

listed in Table I. We also use the long traces, which are
extracted from the SPEC CPU2006 (L) benchmarks, in the
most experiments in the section 5. It seems that we can reach
the same conclusion for both short and long traces.

Table II shows the input sizes that are used in our
experiments. The inputs include branch PCs, GHRs, LHRs,
and GAs. We explore the design space of the length of each
input component to capture the correlation of component
length andmisprediction rate. Recently, themachine-learning
accelerators achieve significant advances [29]–[36]. It gradu-
ally becomes a new research focus. The hardware implemen-
tation of deep learning branch predictors could be designed
in similar fashion. In this paper, the problem of branch pre-
diction is treated as a pure binary classification problem.
Since this paper evaluates deep learning at the algorithm level,
we do not focus on the hardware design of the predictor.
We are not constrained by hardware resources. We use an
offline training method with a training set of 90% branches, a
validation set of 5% branches, and a testing set 5% branches
in each trace. The dynamic conditional branches counts in
each trace are shown in Table I. The training set is used to train
the network. The validation set is used to estimate how good
the network has been trained in the training progress. If the
network is good enough, meaning that the misclassification
rate on the validation set is not decreased in the latest several
iterations, the training process will be stopped. Then, the test
set is used to evaluate the final classification error rate after
the network has been trained.

In our experiments, we evaluated different DBN structures
as shown in Table II. They cover both shallow and deep
neural networks. All these DBN and Backpropagation neural
network (BP NN) [26] configurations are selected from a
thorough search in the large design space of their structures.
All DBN architectures are Popular DBNs. In order to com-
pare with DBN conveniently, the offline models are used in
our perceptron branch classifiers.

V. RESULTS AND DISCUSSION
In this work, we evaluate themisprediction rate of the training
set, the validation set, and the testing set. The misprediction
rate of the testing set is our primary concern, so the default is
on the testing set.

A. COMPARING PERCEPTRON, BP NN,
AND POPULAR DBN
Fig.2 presents the misprediction rate of the perceptron,
the DBN, and the B-P NN classifier for different history
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TABLE 2. Configurations of different DBN structures.

FIGURE 3. The misprediction rate reduction of DBN over perceptron on the testing set of the CBP-4 short trace.

FIGURE 4. The misprediction rate reduction of DBN over BP NN on the testing set of the SPEC CPU2006 benchmarks.

information lengths. The misprediction rate is the geometric
mean across the short 20 benchmarks. The results for training
set are labeled ‘trn’, validation set labeled ‘vld’, and testing
set labeled ‘tst’. As we can see from Fig. 2, deep learning
approaches achieve lowest misprediction rate. For the DBN
and BP NN with the 280-inputs achieves the lowest average
misprediction rate for validation sets and testing sets. For
the perceptron model, the longer the history information
length is, the lower the average misprediction is for all sets.

The reductions of misprediction rate DBN over percep-
tron for each benchmark are shown in the Fig. 3. On the
benchmark ‘I3’, the DBN 1 reduces the mispredictioin
rate by 9.811% compared to the corresponding perceptron.
Compared to perceptron, the average misprediction rate of
the corresponding DBN predictor is reduced by 3.774%.
The lower the misprediction rate of the perceptron, the less

the reduction, and vice versa. Different from linear classifiers,
such as the perceptron, the DBN could reduce the mispre-
diction rate on non-linear separable branches. If the bench-
mark is dominated by linear separable branches, such as
‘F3’ and ‘I5’, the reduction is little or negligible.

Fig.4 presents the misprediction rate of the DBN,
perceptron, and the corresponding reductions on the long
traces. Both DBN and perceptron use a history informa-
tion length of 592 bits. The reductions are over 10%
between the popular DBN and the perceptron for two long
traces benchmarks, ‘L14’ and ‘L17’. The average reduction
is 4.112%.

Fig. 5 presents the reductions of misprediction rate of DBN
over BP NN. On benchmark ‘M2’, ‘I2’, ‘S1’, ‘S2’, and ‘S5’,
there are over 3-4% reduction between them. On the linear
separable benchmarks, the reductions are also little.
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FIGURE 5. The misprediction rate reduction of DBN over BP NN on the testing set of the CBP-4 short traces.

FIGURE 6. The branch misprediction rate of the DBNs, TAGE, and MIN-ALL on the testing set of CBP-4 short traces.

FIGURE 7. The branch misprediction rate of the DBN, TAGE, and the MIN-ALL on the testing set of the SPEC CPU2006 benchmarks.

FIGURE 8. The perceptron branch misprediction rate of perceptrons on the testing set of CBP-4 short traces.

B. COMPARING DEEP LEARNING PREDICTOR OF THE
DIFFERENT LENGTHS OF HISTORY BITS AND PC
ADDRESSES WITH THE TAGE PREDICTOR
Fig. 6 shows the misprediction rate of different DBNmodels,
the TAGE predictor, and the MIN-ALL, on the short traces.
We include the results of popular DBN1, popular DBN2, and
popular DBN3 on the testing set. Fig. 7 shows them on the
long traces. The TAGE, represents for the multi-poTAGE-SC,
which is the unlimited hardware resource winner of the
CBP-4 champion; theMIN-ALL is the lowest of all predictors
for each short benchmark from this champion, and repre-
sents the state-of-the-art in the unlimited hardware resources
group.

From Fig. 6, it can be seen that all DBN classification
models could not outperform the TAGEpredictor on any short
trace. From Fig. 7, there are only 4 long trace benchmarks,
for which the DBN model has lower misprediction rates
than the TAGE. This shows that for branch prediction, the
pure DBN approaches are not as effective as state-of-the-
art branch predictors, which are based on tag matching.

Another interesting observation is the impact of the history
information length from Fig. 6. There are 18 benchmarks,
for which the DBN 2 has lower misprediction rates than the
DBN1, and also 12 benchmarks, for which the DBN3 has
lower misprediction rates than the DBN2. Only for half of
the short benchmarks, the reduction of misprediction rate is
positive correlated to the length of the history information.

From Fig. 8, we can also see the impact of the
history length on the perceptron predictors. There are
19 benchmarks, for which the perceptron with 280-bit length
has lower misprediction rates than the one with the 140-bit
length. There are 17 benchmarks, for which the perceptron
with the 592-bit length has lower misprediction rates than
the one with the 280-bit length. As a result, we can see that
although longer history lengths help to reduce misprediction
rates, it is not always the case for any benchmark. This
observation confirms the finding from the prior work [14],
which shows that the longest match may not be the best for
branch prediction. Fig. 8 also shows there are 19 benchmarks
where the 592-bit input is better than the 140-bit input.
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FIGURE 9. The effect of the hashed PC of DBN branch misprediction rate on CBP-4 short traces.

FIGURE 10. The effect of the length of the LHR of DBN branch misprediction rate on CBP-4 short traces.

FIGURE 11. The effect of the length of the GHR of DBN branch misprediction rate on the testing set of CBP-4 short traces.

This indicates that adding global addresses is profitable in
perceptron predictors. We discuss the effect of PCs, LHRs,
GHRs, and Gas in the DBN model separately in the part C.

C. COMPARING DEEP LEARNING IN THE DIFFERENT
LENGTH OF HASHED PC, LHR, GHR, AND GA
Fig.9 shows the effect of the length of the hashed PC.
DBN pc1, DBN pc2, and DBN pc3 use 32-bit raw PC,
16-bit hashed PC, and 8-bit hashed PC, respectively. The
LHR and the GHR information are the same over the three
structures, as shown in Table 2. Comparing the raw PC
with the 16-bit hashed PC, most benchmarks show lower
misprediction rates than the latter. Comparing DBN pc2 and
DBN pc3 (i.e., 16-bit PC vs. 8-bit PC), only 1 benchmark
shows higher misprediction rate when 16-bit PC is used.
Among the three configurations, the DBNwith the raw 32-bit
PC (i.e., DBN pc1) shows the lowest average misprediction
rate. It implies that the address memorization [37] is not
obvious on our offline training DBN models.

Fig. 10 shows the effect of the length of the LHR. DBN L1,
DBN L2, and DBN L3 use 8-bit, 12-bit, and 16-bit LHRs,
respectively. The hashed PC and the length of GHR are
16 bits and 100 bits, respectively. There are 12 benchmarks,
for which the DBN with 12-bit LHR has lower misprediction
rates than the DBN with 8-bit LHR, and 10 benchmark,
for which the DBN with 16-bit LHR has lower mispredic-
tion rates than the one with 12-bit LHR. There are only
5 benchmarks showing that the misprediction rate consis-
tently reduces with an increase in the LHR length. There are
also 2 benchmarks whose misprediction rates increase with

longer LHRs. It indicates that the longest LHRs may not be
the best for the DBN on every benchmarks.

Fig. 11 shows the influence of different GHR lengths in
DBNG1,DBNG2, andDBNG3 structures as shownTable II.
The lengths of the GHRs are 100 bits, 200 bits, and 512 bits
respectively. The hashed PC addressand LHR length are
the same over three structures. There are only 12 bench-
marks where the misprediction rate drops when the GHR
length increases. Therefore, we could not conclude that, the
longer GHR lengths, the lower the misprediction rate on all
benchmarks. It implies that an adaptive GHR length is desired
for different benchmarks.

To study the impact of GA, Fig. 12 shows themisprediction
rate of the piecewise perceptron [11] with 48 8-bit GA and
DBNs with 16, 32, and 48 8-bit GAs. Here 16/32/48 8-bit
GAs mean 16/32/48 prior branch addresses with 8 bits for
each address. In the DBN GA0, no GA is used. The Hashed
PC, LHR, and GHR are consistent among the structures.

From Fig. 12, it can be seen that all DBN classification
models could outperform the piecewise perceptron onmost of
the benchmarks except the DBN G1, which does not contain
anyGA. Compared to non-GA, the impact fromGA is signifi-
cant in ‘M5’, ‘I2’, ‘S1-S5’. Especially in ‘S2’, the reduction is
as high as 7.01% between DBNGA0 (non-GA) and DBNGA
3(48 8-bit GA).

As discussed above, the GHR length, the LHR length, and
the GA length have significant impact on branch mispredic-
tion rates. Although not always longer the better, the mis-
prediction rate correlates positively to the history length for
over half of the benchmarks. Therefore, the best performing
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FIGURE 12. The effect of the length of the GA of DBN branch misprediction rate on the testing set of CBP-4 short traces.

FIGURE 13. The branch misprediction rate of DBN3, the prior work, DBN Last, and MIN-ALL on the testing set of CBP-4 short trace.

DBN (labeled as DBN Last) is the one the longest history
information as shown in Table II.

In Fig. 13, we compare DBN L with a prior work, the
AIP [14] perceptron predictors. We can see the misprediction
rate of the DBN Last is lower than AIP [14] for 14 bench-
marks while the misprediction rate of the DBN1 is higher
than AIP for 16 benchmarks. Although there are 2 bench-
marks where the DBN Last is lower than the TAGE and
the MIN-ALL, but it reduces by 0.645% compare to DBN3
on average. It worth to explore the available length history
information DBN model to compare with TAGE again in the
future work. It also seem that, the misprediction rate decrease
up to the increasing of the length of the history information
for most of benchmarks. So local connected networks with
the longest history information, such as convolution neural
network (CNN) [38], is likely to be another better choice in
the future work.

D. COMPARING THE HARDWARE BUDGETS OF THE
PIECEWISE PERCEPTRON, THE PRIOR WORK, THE
POPULAR DBN PREDICTOR, AND THE TAGE
The piecewise perceptron and the prior work are practical
hardware implementation predictors. The TAGE is consist
of five poTAGE and one statistical corrector predictor. The
total hardware budget is about 5000 M bits. For the DBN,
because we only use it as a static predictor, no hardware is
need on the backpropagation logic. Hence, the majority of
the hardware budget is spent on the weights of the network.
For example, if the network configuration is 516-305-195-
305-516-1, there are 434226 weights, which consume about
434, 226 ∗ 32 bits= 13,895,232 bits. Adding to the input data
consumption, the total budget is about 13.9M bits. It is less
than 1% of the TAGE.

VI. CONCLUSIONS
This paper takes a binary classification perspective to explore
the branch prediction problem. We apply deep learning

as a classifier. The first observation is pure deep learning
algorithm outperform our prior work, but does not outper-
form state-of-the-art predictors, or lower only on several
benchmarks. Compare to the perceptron, which is com-
monly used together with other branch prediction approaches,
the DBN reduces by 3.774% and 4.112% on average across
the short and long benchmarks respectively. We discuss the
impact of the length of hashed PC, LHR, GHR, andGA on the
misprediction rate in the DBN. Our simulation shows that it
is not always the case that longer LHR, GHR, and GA would
always produce lower misprediction rate. For some cases,
a shorter length may achieve better results. So an adaptive
length of the history information might be a good choice in
the DBN model. At last we comment on the hardware budget
of DBN versus the piecewise perceptron, the prior work, and
the TAGE. The budget of DBN predictor is less than 1% of
the TAGE.

VII. FUTURE WORKS
This paper takes the branch prediction as a pure binary classi-
fication stochastic problem. In order to simplify the problem,
we only implemented offline training. However, a viable
branch predictor must use only previous history information
to train it. In order to apply deep learning in branch prediction,
an online training algorithm may be employed. Since most of
the state-of-the-art branch predictors are integrated of several
standalone predictors, it is also worthwhile to explore the
influence of incorporating other complementary predictors
into the deep learning predictor. The CNN model with the
longest history information is another experiment choice in
the future. Several machine learning accelerators have been
proposed in [29]–[36]. The hardware implementation of deep
learning branch predictors would be designed in similar fash-
ion in the future.
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