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Abstract—Modern commercial multi-core processors are
equipped with multiple hardware prefetchers on each core. The
prefetchers can significantly improve application performance.
However, shared resources, such as last-level cache (LLC) and
off-chip memory bandwidth and controller, can lead to prefetch
interference. Multiple techniques have been proposed to reduce
such interference and improve the performance isolation across
cores, such as coordinated control among prefetchers and cache
partitioning (CP). Each of them has its advantages and disad-
vantages. This paper proposes combing these two techniques
in a coordinated way. Prefetchers and the LLC are treated as
separate resources and a multi-resource management mechanism
is proposed to control prefetching and cache partitioning. This
control mechanism is implemented as a Linux kernel module
and can be applied to a wide variety of prefetch architectures.
An implementation on Intel Xeon E5 v4 processor shows that
combining LLC partitioning and prefetch throttling provides a
significant improvement in performance and fairness.

I. INTRODUCTION

Sharing of the LLC and of the off-chip memory bandwidth
can lead to destructive inter-core interference as more cores
are deployed in modern commercial multicore processors. This
interference may be further exacerbated by prefetch traffic
from multiple hardware prefetchers deployed in each core.
For example, a modern Intel Xeon server processor [1] has
four hardware data prefetchers per core, two at the L1 cache
and two at the L2 cache. These prefetchers may significantly
improve a cores performance by hiding the access latency. At
the same time, they may increase the LLC and memory traffic
and contention. This, in turn, may reduce throughput and fair-
ness, as when a process consumes more than its fair share of
the LLC space or memory bandwidth because of prefetching.
Performance isolation and fairness across processes/cores are
still important problems and this work proposes to address
them via a combination of cache partitioning and prefetch
throttling. It targets Intel Server processors, but can be applied
to any processor with similar capabilities.

Extensive prior work [2]-[11] proposed reducing prefetcher-
caused inter-core interference by controlling prefetch ag-
gressiveness. These included hardware- and software-based
schemes. The former are mostly microarchitectural techniques
requiring additional hardware support. Key metrics used in
these techniques, e.g. prefetch accuracy, cannot be collected
for software use on today’s processors. The latter work on
existing processors and require no hardware modifications,
e.g. [6] designed for IBM POWER?7 processor [12].

Cache Partitioning (CP) has also been researched inten-
sively. Early work [13], [14] proposed theory and michroar-
chitectural techniques. Recently, Intel server processors incor-
porated software controllable, way-based cache partitioning
of the LLC called Cache Allocation Technology (CAT) [15].
Recent work [16]-[18] utilized CAT for performance isolation.
However, it did not consider prefetching directly, which left
potential for further improvement.

Both prefetch throttling and partitioning can be used to
improve performance isolation on multicore processors. This
raises the following research questions: 1) What are their
respective pros and cons? 2) Is there a performance difference
between them? 3) Is it possible to combine them for additional
improvement?

This paper aims to answer the above questions. It de-
velops CMM, a multi-resource management framework for
combining prefetch throttling and cache partitioning. CMM is
a low-overhead, software-based framework running on Intel
multicore processors. Various prefetch throttling and cache
partitioning mechanisms can be implemented and combined
using the framework. It is used to compare the two techniques
and to study their interaction and to explore the design space.
The framework is implemented as a Linux kernel module
and monitors system behavior via hardware Performance
Monitoring Unit (PMU). A integrated throttling/partitioning
mechanism is proposed based on this implementation.It targets
multi-programmed workloads and is transparent to application
software. It is evaluated on an Intel processor, but is easily
portable to any processor with similar capabilities.

II. BACKGROUND AND MOTIVATION

Intel Prefetchers. Today’s Intel processor has four data
prefetchers per physical core. The L1 data cache has the
IP (stride) and the next-line prefetchers and the private 1.2
cache has the stream and the adjacent line prefetchers [15].
By default all prefetchers in a processor are turned on to
improve application performance. Intel provides a mechanism
to turn on/off each of the four prefetchers independently by
programming a special MSR in software. Additionally, Intel
exposes several hardware performance counters (PMU events)
that are related to prefetch, e.g. L2 prefetch misses that count
how many prefetch requests arrive at LLC. These event counts
can be used for dynamic prefetch control (Pref_Ctrl).



Demand requests of a core may trigger L1 prefetchers to
issue requests. Both demand and prefetch requests first check
the local L1 cache and only on a miss continue to the next
cache level (L2). Requests arriving at L2 will trigger L2’s
prefetchers to issue new prefetch requests, which are checked
in L2 before issuing to the LLC.

Cache Partitioning. Intel CAT allows users to create
shared and overlapping way-based partitions on a commer-
cial processor. Such partitioning is much more flexible and can
be used on larger multi-core systems with a low associativity
LLC [19]. Prior work [17] used CAT to improve fairness of
multi-programmed workloads.

A. Prefetch-related Terms

Many similar terms have been wused to describe
prefetching in  prior work, such as prefetch
sensitive/effective/aggressive/useful/friendly.” This section

defines the terms used in this paper to avoid confusion.

A demand intensive' program has a large working set and
generates many demand requests. A demand intensive program
may or may not generate a large number of prefetch requests.
This depends on whether its access patterns will trigger a
prefetcher. A prefetch aggressive program has a high ratio of
prefetch to demand requests. A prefetch aggressive program
brings many prefetched lines into the cache hierarchy and
may interfere with other programs or itself. A program has
a high prefetch accuracy if most of prefetched data are used
for a given prefetcher’ and is called prefetch useful. As in
prior work [20], prefetch accuracy is defined as percentage
of prefetched data used.

Memory bandwidth required by a program is an indication
of demand intensity. Fig. 1 shows the measured average
memory bandwidth (BW) of SPEC CPU2006 benchmarks (on
an Intel E5-2620 v4 processor and for high BW benchmarks)
with and without prefetching. The increase from prefetching
is shown on top part of each bar. Benchmarks, such as
437 leslie3d, 459.GemsFDTD and 410.bwaves, use approx-
imately 4GB/sec demand BW (the blue part in the bar).
Thus they are demand intensive compared with other ones.
Their BW use increases by more than 80% with prefetching.
Therefore, they are also prefetch aggressive.

Prefetch aggressive AND useful programs usually bene-
fit significantly from prefetching, and are called prefetch
friendly. A demand intensive but not prefetch aggressive (i.e.
generating few prefetch requests) program can also be prefetch
useful. However, performance improvement brought by its
prefetching is very limited. Finally, a non demand intensive
program usually will not cause prefetch-caused interference
to others. ! 2

Today’s processors have no PMU counters to directly mea-
sure prefetch accuracy.This work uses its approximation to
identify prefetch friendly applications (See Sec. III-B1).

IThe term “memory intensive” is not used because it may not reflect the
real working set of a program in the presence of prefetching

2The same program may show a low prefetch accuracy for a different
prefetcher
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Fig. 1: Memory Bandwidth Consumption of Part of SPEC
CPU2006 benchmarks
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Fig. 2: TPC Speedup from prefetching for SPEC CPU2006
benchmarks

B. Pros and Cons of Prefetch Throttling and Cache Partition-
ing

Prefetch throttling may improve system performance if ap-
plied periodically to select a different prefetcher configuration
on each core to reduce interference. However, this may lead
to performance loss for applications on throttled cores. These
are usually prefetch friendly and benefit significantly from
prefetching. Thus they can yield the LLC space and memory
bandwidth to other applications and still have reasonable
performance. Thus, there is a trade-off between degrading per-
formance of such applications and reducing their interference.

Exclusive CP creates a physical LLC isolation among
cores and hence prevents inter-core interference (regardless of
prefetchers). However, when multiple cores share a partition,
interference is created within a partition. LLC partitioning does
not necessarily reduce prefetch traffic arriving at the LLC and
even memory. This is because prefetchers have little feedback
from the LLC to indicate throttling may be beneficial, let
alone coordinating across cores. Thus, a prefetch friendly but
aggressive application can generate a large number of prefetch
requests to memory. Memory BW contention may also be
sigfnificant if prefetch aggressive programs occupy the same
partition.

C. Coordinating Prefetching and Cache Partitioning

Let us make two observations vis a vis performance based
on SPEC CPU2006 benchmarks.

Fig. 2 shows the IPC speedup from prefetching for
SPEC CPU2006 [21] benchmarks. Several benchmarks, such
as 462.libquantum, 410.bwaves, 481.wrf, 459.GemsFDTD,etc
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Fig. 3: TPC distribution across LLC ways (all prefetchers on).

have 50+% improvement from prefetchers (are prefetch
friendly).

Fig. 3 shows each benchmark’s performance as a function
of the number of LLC ways with prefetching enabled. Many
benchmarks,especially prefetch aggressive and friendly, need
no more than 2 ways to achieve 90% of their highest per-
formance. [17] had a similar observation. This observation,
that applications whose high performance is mainly from
prefetching may not need many cache ways to achieve its
highest performance, leads us to rethink how to utilize both
prefetching and CP in a coordinated way. Prefetchers and
LLC can viewed as two different resources. An application’s
performance can be from either of them or both. Yielding
one resource and getting another makes it possible to improve
overall system performance and fairness

III. COORDINATED MULTI-RESOURCE MANAGEMENT
(CMM)

Our overall goal is to reduce prefetcher-caused inter-core
interference. This requires identification of prefetch aggres-
sive (Pref_Agg) applications. One can then throttle their
resource usage by applying prefetcher control or CP or both
periodically to maximize system performance and fairness.
Targeting this approach, the CMM framework is designed as
a decoupled structure: a Front- and a Back-end. The front-
end is responsible for detection and the back-end for resource
allocation. This flexible design allows either front- or back-
end to be modified independently as needed without affecting
the other.

CMM performs resource allocation periodically using sam-
pling. Fig. 4 shows a high-level diagram. The execution of
a process is divided into a sequence of “Execution Epochs”,
each followed by a “Profiling Epoch.” The latter consists of
multiple ”Sampling Intervals”. At the end of each execution
epoch, the CMM’s front-end collects the necessary runtime
statistics and identifies the prefetch aggressive applications.
Then the back-end profiles an application by trying different
resource configurations and chooses a good candidate for next
execution epoch (see more detail in Sec. III-B1)

A. Pref Agg Application Detection

Assume N applications are running on N different cores
concurrently. Intel’s PMU provides the following relevant
events per logical cpu:

Execution Epoch

'

Profiling Epoch

Sampling Interval

Fig. 4: TheT Execution and, Sam

ABLE I: Multiple

1\;/ihng Mechanism
etrics

No. Metric Definition Description
M-1 | L2-LLC-traffic L2_pref_miss The sum of both demand
+ L2 _dm_miss | and prefetch requests
between L2 and LLC
M-2 | L2_pref_miss_ L2_pref_miss The fraction of the prefetch
frac /L2-LLC-traffic | requests
M-3 | L2_pref_miss_ L2_pref_miss L2 prefetch requests
traffic_rate per second arriving at LLC per sec,
(L2_PTR)
M-4 | pref_gen_ablity L2_pref_req Measures the ability of an
(PGA) /L2_dm_req application to generate L2
prefetches
M-5 | L2_pref_miss_ L2_pref_miss The fraction of prefetches
rate /L2_pref_req missing L2.
M-6 | L2_PPM L2_pref_req Prefetches issued per
/L2_dm_miss demand miss
M-7 | LLC-Mem-pref- | BW - L3_load | An approximation of LLC
traffic _miss*64 to memory prefetch traffic

o L2_pref req
Number of prefetch requests generated by the adjacent
prefetcher and streamer prefetcher in an L2 cache.

o L2_pref miss
Number of L2_prefetch_requests that miss the local L2
cache. Only these missed requests will arrive at LLC.

o L2_dm_req
Number of demand requests that arrive at L2 cache

o L2 _dm_miss
Number of L2 demand requests that miss L2 cache.

o L3 load_miss
Number of load micro-ops that miss LLC and issue to
memory.

Specific metrics derived from these events are listed in
Table I.

These metrics are used for identifying Pref_Agg cores. [8]
used M-6 to classify cores into two categories: aggressive and
meek, and applied a coarse-grained (5 configurations) group-
level prefetch throttling. Their throttling applies to all cores
and was designed for a totally different prefetcher hierarchy
(the per-core LLC prefetcher). Using this metric on the Intel
L2 cache side cannot accurately identify the Pref_Agg cores.

This work uses a different detection mechanism for
Pref_Agg cores. First, M-4 is used to detect cores whose
access patterns cause prefetchers to generate prefetch requests.
A core whose M-4 is above the average value across all cores
is viewed as potentially prefetch aggressive. Second, M-5 is
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Fig. 5: Detection Mechanism used by CMM

used to filter out cores with high prefetch locality, i.e. whose
most prefetch requests hit the L2 cache. A threshold is used
(say 70%) will be considered. Third, M-3 is used to evaluate
the prefetch pressure on the LLC. It measures the bandwidth
pressure caused by prefetch (instead of an absolute prefetch
number) between L2 and LLC. Figure 5 shows a high level
diagram of this mechanism.

One can also use metric M-7 to identify cores that issue
a large number of prefetch requests to memory. However,
we observed that cores with high L2_pref miss_traffic_rate
usually also have a high M-7. The identified Agg-set by
Figure 5 basically stays the same as when using M-7.

B. Back_end Design

Once the agg set is determined by the front_end, the
back_end of CMM will conduct resource allocation across
cores to improve performance isolation. Let’s us consider the
following three approaches.

o Prefetch Throttling: Throttle the prefetchers of one or
more cores in agg_set to reduce their interference

e Cache Partitioning: Place cores in agg_set into a rel-
atively small partition (called agg_partition) and let the
cores in neutral_set share the whole cache

« Coordinated-throttling: First perform Cache Partiton-
ing, then throttle the prefetchers within agg_partition

1) Prefetch Throttling (PT): This approach throttles
prefetchers of cores in the agg_set. All four prefetchers per
core are either on or off. For example, if agg_set contains two
cores, there are four prefetch combinations: {on, on}, {on,
off}, ..., {off, off}. PT applies them for a very short sampling
interval each and chooses the “best” one. “Best” refers to the
combination produces the lowest system average normalized
turnaround time (ANTT), which is the reciprocal of harmonic
speedup (HS) [22]. The calculation of HS requires the knowl-
edge of an application’s IPC when running alone.Though prior
work [23] tried to estimate the running-alone IPC in multicore
processors, it requires additional hardware support.

This work instead uses a proxy metric, the harmonic mean
of all cores’ IPC (called hm_ipc), to estimate the performance
and fairness of a prefetch combination. The evaluation (see
Sec. V) shows the system fairness and performance are indeed
improved over the baseline (no prefetch control) using this

metric. This “best” prefetch combination is applied to next
execution epoch.

The first sampling interval is always {on, on} because
some cores’ prefetchers could have been turned off in the
last execution epoch if their L2_PTR or PGA were 0. So a
short sampling period with all cores’ prefetchers on is needed
to collect the PMU statistics before trying other sampling
intervals.

As mentioned above, disabling prefetching for prefetch
friendly applications will hurt their performance even though
doing so can reduce the interference to others.(Actually, not
all cores in agg_set are prefetch friendly. This is discussed in
more detail below). The experiments show that some applica-
tions (410.bwaves, 462.libquantum) could get a performance
degradation of more than 50% if their prefetching is turned
off most of the time.

A large agg_set (say 10 cores) makes the search space of
all available prefetch settings large. With the four per-core
prefetchers viewed as an single entity and only “turned on/off”,
there are still 210 settings to search. In this case, a practical
and scalable' solution is to use group-level throttling. The
cores in agg_set are clustered into a limited number of groups
(say 3) and all prefetchers in each group are viewed a single
entity. The limited group-level settings (23 = 8) are then tried.
Prior work [8] only uses a 2-group clustering which is coarse
grained. This paper uses the K-Means Algorithm [24] to
cluster the cores in the agg_set into limited groups by their
L2_PTRs (M-3), which evaluates the prefetch pressure to LLC
brought by each core. The cores with similar L2_PTRs are
placed into the same group.

Useful and Useless Prefetching: Cores in agg_set can be
further categorized into two classes: prefetch unfriendly and
prefetch friendly. The former usually prefetches more useless
data because of its inaccurate prediction and thus benefits little
from prefetching (or even is hurt) while polluting the cache
severely. The latter needs to be treated with care: turning off
their prefetching will hurt their performance a lot, but keep-
ing their prefetching on will probably hurt other programs’
performance due to interference. Prior work [25] (Paragraph
5 in the introduction) shows that maximum weighted speedup
can be achieved when a core with very useful prefetching
yields some bandwidth to cores with less useful prefetching.
With only prefetch throttling, this might be a good solution.
However, as shown in the next section, it is possible to avoid
reducing performance of applications with aggressive AND
useful prefetching.

Detect prefetch friendliness: This paper uses an indirect
method to identify prefetch friendly applications in lieu of
prefetch accuracy. Prefetchers of cores in agg_set are turned
off in the second sampling interval. A per-core IPC speedup
from prefetching is calculated (from data of the first sampling
interval with prefetchers on). A core with a predefined speedup
over a threshold (say 50%) is considered prefetch friendly.

IBy ”scalable”, we mean it can be applied to more cores
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Fig. 6: Partition Options

2) Cache Partitioning (CP): There are several proposed
CP implementations. [17] groups cores into several clusters
and each cluster occupies a separate partition. However, it did
not consider the effect of prefetching (see Sec. V-B for more
discussion).

This work studies two CP plans: 1) place the agg_set into a
small partition, and 2) split agg_set into two subsets: prefetch
friendly and unfriendly, then place each subset into a separate
partition. They are compared with the best known algorithm,
Dunn in [17], in Sec. V-B. Note that CP just needs the first
two sampling intervals for the detection of prefetch usefulness.

While CP isolates prefetch interference from cores in the
agg_set, the local interference within the partition still exists.
Also the number of prefetch requests leaving the LLC may not
be reduced and could still cause memory bandwidth contention
with other programs. Additionally, if agg_set contains many
prefetch-unfriendly cores, it is beneficial to turn off their
prefetching.

3) Coordinated Throttling: A coordinated solution com-
bines prefetch throttling and CP. First, all prefetch-friendly
cores are placed into a small shared partition while keeping
their prefetchers enabled. They are typically not LLC sensitive
and a small partition results in a pretty high performance.
Meanwhile, the remaining cores share the whole cache ca-
pacity. Second, prefetch-unfriendly cores are identified and a
group-level throttling is applied as discussed above. Actually,
other implementations are possible. Figure 6 shows the avail-
able options.

o (a) puts agg_set into a small partition. Agg_set contains
both prefetch-friendly and/or unfriendly cores.

« (b) only puts prefetch-friendly cores into a partition.

¢ (c) allows prefetch-unfriendly cores to stay in a separate
small partition.

o (d) indicates a special scenario: agg_set is empty. This
usually happens when there are no prefetch aggressive
applications in the multi-programmed workload or current
program phase. If so, it will be meaningless to throttle
the prefetchers. In this case, CMM will use the "Dunn”
algorithm in prior work [17] for cache partitioning.

This paper evaluates the first three options. Note that only
the prefetchers of prefetch-unfriendly cores can be throttled.
If no such cores are found, only CP will be applied.

Such coordinated throttling trades off the use of two re-
source types across cores and tries to maximize each core’s

performance and the whole system performance and fairness
as well. It should be noted that prefetch-useless cores could
lose either one of them (prefetching) or both depending on the
implementation.

Fartition Size: Per Fig. 3, most prefetch aggressive
applications just need no more than 2 ways to achieve 90% of
their highest performance. It was experimentally determined
that partition size of 1.5 times the size of the agg_set works
well.

IV. EXPERIMENTAL METHODOLOGY
A. Processor used

All measurements were performed on an Intel Broadwell-EP
Xeon server processor E5-2620 V4 [26]. It contains 8 physical
cores and 16 hardware threads and each physical core contains
private 32KB L1 I/D-Cache and 256 KB L2 cache. All cores
share a 20 MB L3 cache. This processor has a 2.1 GHz
base frequency and supports 68.3 GB/s Maximum Memory
Bandwidth. The memory is DDR-2400 and OS is Ubuntu
16.04 with the kernel 4.4.24. We disable the “Turbo boost”
to keep each core frequency the same. Performance counters
used in this work exists on all almost all Intel mainstream
processors from the 2rd generation Intel Core to the latest 8th
one [15].

Baseline system The baseline used in the evaluation has all
four prefetchers in each core enabled and no prefetch control
and no cache partitioning are applied. Each workload was
executed three times and the median value was used in the
results.

Implementation details The CMM is implemented as a
loadable kernel module. We implement our own PMI (Per-
formance Monitoring Interrupt) and IPI (Inter-Processor Inter-
rupt) handlers to collect necessary PMU statistics and execute
the algorithms of prefetch throttling and/or cache partitioning.
In order to estimate the module-related overhead, we used
two counters to collect cycles: PMU and TSC (Timestamp
Counter). The former does not count handler-related cycles,
and the latter does. Then we compare them and find the
overhead is less than 0.1%.

The decoupled design allows the algorithm(s) in either the
front- or the back-end to be changed individually. This work
provides a flexible and open design framework for exploration.
For example, if Intel or other processors expose more PMU
events in the future, Table I and related detection algorithm
can be easily explored and updated to achieve better results.

B. Mixed Workloads

SPEC CPU2006 benchmarks [21] and an micro-benchmark
(see below) are used to create multicore mixed workloads.
Each N-core workload contains N benchmarks. Each bench-
mark was compiled with Inte]l ICC 17.0.0 or Intel Ifort
17.0.0 with the -O3 option. We classify the benchmarks into
different categories: (1) perfetch aggressive (if their demand
BW is more than 1500 MB/s AND BW increase brought by
prefetching is more than 50% in Fig. 1) or not; (2) prefetch



friendly” (if their ipc speedup is more than 30% in Fig. 2) or
not; (3) LLC sensitive (if they need at least 8 ways to achieve
80% of its highest performance in Fig. 3) or not. LLC sensitive
applications are more easily affected by the interference in
LLC.
Since there is no SPEC benchmark whose performance
is significantly reduced by prefetch (471.omnetpp is reduced
only slightly), we manually created a micro-benchmark called
”Rand_Access” as a typical prefetch unfriendly application.
It is strongly prefetch aggressive and conducts random access
in a large memory region. Its performance slowdown with
prefetching over no-prefetching is 25% when running alone
because its access pattern is irregular.
It is not feasible to evaluate our mechanism with all possible
combinations of 8 benchmarks. Instead, typical workload types
are created by mixing benchmarks from different classes. The
number in parenthesis below indicates how many benchmarks
of a given type are in a workload.
e Pref _Fri: Prefetch-friendly benchmarks (4) + Non
Pref_Agg benchmarks (4)

o Pref_Agg: Prefetch-friendly benchmarks (2) + unfriendly
ones (2) + Non Pref_Agg ones (4)

o Pref_Unfri: Prefetch-unfriendly benchmarks (4) + Non
Pref_Agg ones (4)

o Pref_No_Agg: Non Pref_Agg benchmarks (8)°

Each category contains 10 workloads and the benchmarks
are chosen randomly from their respective class (prefetch
friendly/unfriendly). Note that four non Pref Agg benchmarks
include at least two LLC-sensitive benchmarks. Each workload
runs for 2.5 minutes for both baseline and CMM-based mech-
anisms. If an application finishes earlier, it restarts from the
beginning.

The length of an execution epoch and sampling period are
5 billion and 100 million core cycles respectively, which are
determined to be a good set up experimentally. In fact, [3]
shows a 50:1 of “execution epoch vs sampling period” is a
reasonable choice. Other lengths (2 billion, 50 million) or (1
billion, 40 million) show similar results. One reason could
be that Intel has a different prefetcher design from IBM’s
POWER.

C. Evaluation Metrics

Prior work [5], [22], [27]-[30] explored the “fairness” and
“performance” on multi-core system from various perspec-
tives. Like recent architecture work ( [8], [11], [16]-[18]), we
use harmonic speedup (HS) and normalized weighted speedup
over baseline (WS) [11], [18] to evaluate the system perfor-
mance and fairness of the above multiprogrammed workloads.
They are defined as follows:

N
HS =
Ipcialone

N
=1
’In this paper, a “prefetch (un)friendly” application is also prefetch

(un)aggressive unless otherwise specified
3In some program phases, the agg_set may not be empty

N

ws=>Y"
=1

where IPC; is the IPC of core ¢ and N is the num-
ber of cores. I PC’?“’”e represents program;’s IPC when it
runs alone on a single core of a multicore processor. And
IPCt ether represents program;’s IPC when it runs together
with other programs on different cores in a multicore proces-
sor. HS considers both system performance and fairness.
According to [22], 1/HS is equal to the average turnaround
time, which is a key performance metric in a multicore sys-
tem. [ PCH9oT M= apnd [ pCbaseline yepresent program;’s
IPC when Algorithm-x and baseline are applied, respectively.
Algorithm-x could be PT, CP or CMM.

IPC‘AlgOT'ithm—a:
i
IPO,L baseline

V. EVALUATION

The proposed mechanisms are evaluated and compared in
this section. In all graphs, the first 10 workloads are Pref_Fri,
the second 10 are Pref_Agg, followed by 10 Pref_Unfri and
10 Pref Non_Agg.

A. Prefetch Throttling (PT)

Fig. 7 shows the normalized HS and WS vs baseline for
PT. Most workloads gain from PT. Four grey bars show the
average value for each workload category. Pref Unfri and
Pref Agg have the highest and second-highest performance
improvement, respectively. Pref_Fri achieve a relatively lower
improvement and Pref No_Agg sees no improvement, as
Pref_Unfri and Pref_Agg contain prefetch unfriendly appli-
cations. Turning their prefetchers improves both their own
and other programs’ performance. However, turning off the
prefetchers in Pref Fri reduces the interference to others at
the cost of hurting their own performance. As a result, the
overall performance improvement is not very significant.

Recall that some prefetch-friendly applications lose per-
formance when their prefetching is disabled. Fig. 8 shows
this. The per-application IPC speedup with PT over baseline
is calculated. The lowest speedup is called the worst-case
speedup in a workload. The figure shows that at least one
application’s performance is significantly reduced for 80% of
the workloads.

1.8- 1.8-

1.6-

Normalized HS
Normalized WS

0 10 20 30 40 0 10 20 30 40
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Fig. 7: Normalized HS and WS
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Fig. 8: Lowest Normalized IPC in each workload

B. Cache Partitioning (CP)

Fig. 9 shows the normalized HS and WS to baseline of
Dunn, Pref-CP and Pref-CP2. Pref-CP puts agg_set into a
small partition and Pref-CP splits agg_set into two subsets
(prefetch friendly or not) to assign each a separate parti-
tion. It shows Pref-CP(2) significantly improves the system
performance over Dunn in [17]. Dunn uses the PMU event
“STALLS_L2_PENDING” to cluster cores into several dif-
ferent groups based on similarity of each core’s measure-
ment. Each group is then assigned a certain number of
LLC ways as its partition. A group with higher average
“STALLS_L2_PENDING” gets more ways. The partitions
partially overlap with each other, in fact they are nested.

Dunn did not consider the effect of prefetching. For exam-
ple, A prefetch aggressive program that has similar stalls_
12_pending to other programs will be clustered into the same
partition. As a result, the prefetch interference happens within
this partition. Fig. 10 shows Pref-CP(2) have a higher worst-
case speedup than Dunn. It is worth noting that Pref-CP2
has higher performance than Pref-CP for workload category
Pref_Agg and Pref Unfri. One reason is that some prefetch
unfriendly applications (like 471.omnetpp) still need many
LLC ways to get more performance as shown in Fig. 3. So
Pref-CP2, which puts the unfriendly ones into a small partition,
can hurt these applications’ performance.
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C. Coordinated Multi-resource Management (CMM)

Fig. 11 shows the normalized HS and WS to baseline of
three different coordinatedly throttling mechanisms: CMM-a,
CMM-b and CMM-c, which correspond the (a),(b) and (c) in
Fig. 6. CMM-a puts agg_set into a small partition and apply PT
for the prefetch unfriendly cores in the set. CMM-b puts only
the prefetch friendly cores in agg_set into a small partition
and applies PT for the unfriendly ones in the whole cache.
CMM-c looks like Pref-CP2, but with PT applied.

Workloads Pref_Fri and Pref_No_Agg show the same per-
formance. The reason is that the three mechanisms degenerate
into CP-based throttling for these two workload categories
because no prefetch unfriendly cores are throttled. Pref_Agg
and Pref_Unfri categories have CMM-a and CMM-c show bet-
ter performance than CMM-b. In CMM-b, prefetch unfriendly
cores still cause demand interference to the cores that share the
whole LLC with them even though throttling their prefetching
can reduce the prefetch-caused interference.

Additionally, Fig. 12 shows CMM-a/b/c give all workloads
a 80%+ worst-case speedup and most of them get 90%+. This
indicates no individual application is hurt significantly by the
mechanisms.

Finally, putting everything together, Fig. 13 shows the
comparison among all 7 throttling mechanisms. Workload
category Pref_Agg and Pref_Unfri benefit the most.
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D. The Effect of Memory Traffic

Fig. 14 shows the normalized BW to baseline of 7 throt-
tling mechanisms. PT has the lowest bandwidth consumption
because it frequently disables some cores’ prefetching. By
contrast, Dunn, Pref-CP and Pref-CP2 have the highest band-
width occupancy. This meets our analysis in Sec. II: cache
partitioning cannot reduce the prefetch traffic a lot even though
they do improve performance isolation. The coordinated throt-
tling mechanisms, CMM-a/b/c, get a good balance between
bandwidth consumption and system performance.

E. The Effect of L2 stall cycles

The PMU event "STALLS_L2 PENDING” is used for
counting the number of cycles during which the execution
of an application is stalled due to L2 cache misses [15]. Prior
work [17] shows there is a strong positive correlation between
its count and an application’s slowdown. This event’s count is
affected by the interference on shared resource such as LLC,
memory bandwidth and controller, on-chip interconnects. As
[17] pointed out, as the number of concurrently running
applications grow, the stall cycles caused by interference
will dominate in total stall cycles experienced by the cores.
Therefore, by observing this event, we know how effectively
our mechanisms improve the system performance isolation.
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Fig. 15 shows the normalized "STALLS_L2_PENDING”
for each workload (we sum per-core’s number to get a single
value for each workload). Again, CMM-a/c has the lowest
number for most workloads (the lower the better).
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VI. RELATED WORK
A. Local/Global Prefetch Control

Wu et al. [2] proposes a dynamic control of preftching
to mitigate intra-application prefetch interference on Intel
architectures. Liao et al. [4] proposes a machine learning-based
model to adjust the prefetch configuration for the individual
application in Intel processors. Kang et al. [31] studies the
effect of hardware prefetching in virtualized environments.
Jimenez et al. [3] proposed an adaptive prefetch control to
independently adjust each core’s prefetch aggressiveness on
IBM POWER?7 architecture. Intel prefetch architecture does
not provide a fine granularity control like the POWER?7
architecture.



Ebrahimi et al. [5] proposes a Hierarchical prefetcher ag-
gressiveness controller (HPAC) to throttle multiple prefetchers
on multi-core processors. It dynamically identifies those ap-
plications that cause inter-core interference and throttle their
prefetchers to reduce the interference. Albericio et al. [32]
proposes an adaptive controller (ABS) to manage the aggres-
sive prefetcher of each core on the multicore platform. Panda
et al. [8] proposes a synergistic prefetcher aggressiveness
controller (SPAC) to improve the system fair-speedup. Jimenez
et al. [6] proposes a memory bandwidth based approach to
throttle the prefetchers on IBM POWER?7 architecture. This
approach makes throttling decisions based on each core’s
bandwidth consumption and prefetch usefulness.

B. Other Prefetch-related research

Unlike the control of multiple prefetchers, the goals of [20],
[33]-[38] are to design a single prefetcher. They are orthogonal
to the work in this paper, which does not propose a new
prefetcher architecture. Instead, the global control described
in this paper can be applied to a variety of prefetchers. In
addition, [25] studies the interaction of prefetching and BW
partitioning.  [39]-[41] propose various prefetch filters to
reduce the prefetch requests that can cause inteference to other
applications or be useless. [42]-[46] explores how to manage
shared resources on multi-core platforms.

C. Cache Partitioning

Qureshi et al. [14] proposes a utility-based cache partition-
ing (UCP) mechanism to partition the shared LLC among
multiple applications. A way-based partitioning algorithm uses
the utility to allocate various amount of cache ways to each
application. It should be noted that different partitions cannot
overlap with each other. Cook et al. [16] evaluates the effect
of cache partitioning on real Intel multi-core processors,
including an optimal static LLC partitioning and a dynamic
algorithm. They find that measurements on real machines pro-
vide different observations than past simulation-based work.
Wang et al. [47] proposes a combined cache partition method
(SWAP) to take into count both of set and way partitioning.
This method can cooperatively manage cache sets and ways
and provide many fine-grained partitions. Selfa et al. [17]
proposes a clustering-based cache partitioning mechanism to
improve the fairness of multi-core processors. The allocations
are grouped into clusters according to their 12 cache stalls, and
different clusters get different ways.

VII. CONCLUSIONS

This paper proposes CMM, a coordinated multi-resource
management mechanism to reduce the prefetch caused inter-
core interference on mainstream Intel multi-core processors.
It does not require additional hardware support and manages
the use of hardware prefetchers and LLC in a dynamic and
coordinated manner by monitoring the applications’ prefetch-
ing/cache behavior. Several CMM implementations were eval-
uated for diverse multiprogrammed workloads. The results
show that using shared cache partitions to isolate applications

with different prefetching behavior, combined with prefetch
throttling, significantly improves system performance and fair-
ness(performance isolation) for multiprogrammed workloads.
The results are on Intel architecture but are generally applica-
ble to other processors.
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