New Opportunities for Compilers
in Computer Security

Junjie Shen', Zhi Chen', Nahid Farhady Ghalaty?, Rosario Cammarota3,
Alexandru Nicolau!, and Alexander V. Veidenbaum! ™)

! Department of Computer Science, University of California, Irvine, USA
{junjiesl,zhic2,nicolau,alexv}@ics.uci.edu
2 Accenture Cyber Security Technology Labs, Arlington, VA, USA
nahid.farhady@accenture.com
3 Qualcomm Technologies, Inc., San Diego, USA
rosarioc@qti.qualcomm.com

Abstract. Compiler techniques have been deployed to prevent various
security attacks. Examples include mitigating memory access corruption,
control flow integrity checks, race detection, software diversity, etc.
Hardware fault and side-channel attacks, however, are typically thought
to require hardware protection. Attempts have been made to mitigate
some timing and fault attacks via compiler techniques, but these typically
adversely affected performance and often created opportunities for other
types of attacks. More can and should be done in this area by the compiler
community.

This paper presents such a compiler approach that simultaneously mit-
igates two types of attacks, namely a fault and a side-channel attacks.
Continued development in this area using compiler techniques can fur-
ther improve security.

1 Introduction

Compiler techniques have been successfully deployed to prevent various security
attacks. Examples include mitigating memory access corruption, such as buffer
overflow, in which the attacker attempts to subvert the control flow, e.g., via
code reuse attack. Static analysis techniques are used to examine source code to
eliminate bugs that can be exploited. Control-Flow Integrity checks the validity
of the control-flow of an application. Software diversity is used to generate at
compile time a unique binary layout for each compilation, limiting code reuse
attacks. It is also applied at binary loading time to provide a different program
memory layout for each execution, while the binary is fixed.

Hardware fault and side-channel attacks are harder to deal with and are
typically thought to require hardware protection. A fault attack (FA) injects
faults into the underlying microprocessor hardware to alter values in registers or
memory and affect the execution of instructions. The attacker can then observe
the faulty output and finally break the security of the system using systematic
fault analysis models, such as Differential Fault Intensity Analysis (DFIA) [11].

2 J. Shen et al.

A side-channel attack (SCA) may record sequences of measurements (traces),
taken across cryptographic operations, such as operation counts, power consump-
tion, execution time, etc. Statistical methods, such as Differential Power Analysis
(DPA) [13] and Correlation Power Analysis (CPA) [4], on traces are then used
to identify secret key dependent correlations and perform key extraction.

Mitigation strategies for FA and SCA are designed and deployed indepen-
dently from each other. The former are built on redundancy [2] while the latter
are based on masking and hiding [3]. Integration of both mitigation strategies is
complex because of the interaction between them. The overhead usually exceeds
the combined overhead of the individual mitigation strategies. A single strategy
that mitigates both threats at the same time with overhead comparable to a
typical mitigation strategy against FA or SCA [16] would be highly beneficial.
Equally beneficial would be the integration of the combined mitigation in a com-
piler, because current implementations rely on manual effort by experts, which
is complex and error-prone.

This work highlights one of many opportunities for compiler writers to ad-
dress physical security, in collaboration with security experts. A compilation
flow is developed to use vectorization to make code resistant to both fault and
power /electromagnetic attacks. Vectorization is used for operation duplication
and data redundancy in registers/memory, not for ILP. Furthermore, the dupli-
cation is performed in such a way that the Hamming weight of data in a vector
register stays constant. The combined approach is referred to as Twofer.

To the best of our knowledge, this is the first work that exploits vector ex-
tensions to protect cryptographic algorithms against both fault and side-channel
attacks within a unified framework.

2 Proposed Mitigation Technique

The compilation framework and the implementation details of the proposed mit-
igation technique are briefly described next. [8] proposed an approach to code
vectorization for vector register value redundancy and operation duplication to
mitigate fault attacks. Checking is performed at certain program points, such as
stores, function calls, and branches, by comparing the equivalence of two result
values in a vector register. In addition, vector gather/scatter instructions were
utilized to duplicate address computations.

Memory contents was not duplicated in [8], however, in line with much prior
work that relied on memory/cache ECC. This is no longer sufficient due to
the recent proliferation of “Rowhammer” based memory attacks. This work,
therefore duplicates all variables of the cryptographic primitives and checks the
memory contents integrity using the duplicated values.

The proposed mitigation uses 1’s complement to compensate the Hamming
weight variance. The compiler can insert additional instructions to invert the
result of a memory load before packing the original and inverted values in a
vector register to form a Hamming weight-constant vector. However, this will
affect the performance significantly since memory loads are very common in block

New Opportunities for Compilers in Computer Security 3

ciphers. More importantly, key-dependent scalar loads are vulnerable to DPA.
The size of key-dependent storage, such as S-box and cipher state arrays in AES,
is therefor increased by 4x. In Twofer, the new array duplicates and interleaves
the value of each element val in the original array with its 1’s complement: (val,
~ wval, val, ~ val). The array indices need to be multiplied by four to reflect the
correct location in the new array (i.e., stride-indexing). Arrays are also aligned
to the cache line size so that every (val, ~ val) pair fits in a cache line.

A vector memory load reads four consecutive values from the original memory
address simultaneously using the masked vector load primitive. Two data items
are used to counter fault attacks and the other two are used to prevent side-
channel leakage. Stores are handled similar to loads, but are protected using
masked stores. However, vector load and store instructions are more expensive
than their scalar counterparts.

Most ALU instructions can be effectively protected against both FA and
SCA using the proposed 1’s complement approach, but the xzor operation can
cancel the masking effect and increase the Hamming weight. This is because both
operand registers for zor always contain the original values and their inverted
values. Hence, the two related lanes of a result vector register will be identical.
An zor operation will produce a vector result with two values where one is the
inverted value of the other if we invert one of the vector lanes in a vector operand
before a zor operation. For example, if the two operands are (a, —a) and (b, =b),
either —a or —b needs to be inverted. This pre-processing requires an additional
xor operation, but the performance cost is very low.

3 Evaluation

The evaluation of Twofer was performed by comparing it with Scalar in de-
fending against side-channel and fault attacks. It used the cryptographic library
GNU Libgerypt. Pin [14] was used as the base to build a binary instrumentation
tool to collect traces, by recording Hamming weights corresponding to a discrete
instant in time when data is written into registers during the execution of crypto-
graphic software. This tool provides an accurate representation of the Hamming
weight leakage model for cryptographic implementations in software. The evalu-
ation of fault attack resistance was performed by injecting 1,000 single-bit faults
at random positions in a cryptographic algorithm execution.

3.1 Resistance Against Side-Channel Attacks

Attacking with DPA. The cumulative differential for each key guess is calcu-
lated. DPA will generate 256 differential traces corresponding to each key byte
guess. The key byte guess with the highest cumulative differential will be the
speculation for the correct byte. The differential analysis is applied on all 16 key
byte positions. For brevity, we only include a single key byte in the analysis.
The differential analysis results of a key byte are presented in Fig. 1. DPA
is applied on a set of randomly generated keys. The unprotected Scalar is com-
pletely broken in the DPA attack with 20,000 traces. On the other hand, Twofer

4 J. Shen et al.

remains invulnerable after the differential analysis to the limits of compliance—
FIPS 140 [10] and BSI AIS [12] series of recommendations for side-channel resis-
tance of cryptographic software modules. The correct byte is indistinguishable
as its cumulative differential is perfectly blended into other guesses. More im-
portantly, the correct byte in Twofer shows no trend of standing out as more
traces are added in the differential attack.

Attacking with CPA. A more powerful attack, correlation power analysis,
is applied on both Scalar and Twofer. For a given key guess, CPA calculates the
Pearson’s correlation coefficient between the power hypothesis for the Hamming
weight of SubBytes output and the actual power usage (traces).

Fig. 2 shows the CPA results on a key byte position. The correlation of the
correct byte in Scalar remains 1 throughout the experiment. In fact, Scalar is
completely broken with merely 5 traces. However, Twofer shows full mitigation
against CPA, benefiting from the constant Hamming weight of key-dependent
instructions.

0.12
0.10
0.08
0.06
0.04
0.12
0.10

0.08

Normalized Cumulative Differential

0.06

0.04

0 20000 40000 60000 80000 100000
Number of Traces

Fig. 1. DPA results of Scalar (top) and Twofer (bottom) on a key byte.

3.2 Resistance to Fault Attacks

1,000 single-bit faults were injected to each of the ciphers, similar to the approach
in [8]. Fig. 3 presents the results, where detected are the faults detected by
our error checking code; incomplete are faults causing segmentation faults or
causing the cipher to enter an infinite loop; masked are the faults with no effect
on the cipher result (i.e. was masked); and corrupted shows the faults for which
the cipher finishes and generates an incorrect result. The unprotected ciphers
have a 24.34% corruption rate, on average, while Twofer reduces it significantly
— down to 0.53%.

New Opportunities for Compilers in Computer Security 5

1.00

0.75

0.50

0.25

0.00
0.30

Correlation

0.20

0.10

0.00
0 20000 40000 60000 80000 100000
Number of Traces

Fig. 2. CPA results of Scalar (top) and Twofer (bottom) on a key byte. The attacks
were performed using 200 to 100,000 traces with a step size of 200.

ZZ2 Detected KXY Incomplete [Masked EXX Corrupted

100
0 I m
N BN \ 3
< 80 s § §
p N BR \
| B #
|\ :
- 20
ST ST ST ST ST ST ST
RSA DSA ELG ECDSA Ed25519 GOST Mean

Fig. 3. Fault injection results. S for Scalar and T for Twofer.

6 J. Shen et al.

3.3 Overhead Evaluation

The run time and energy overheads of Twofer were collected over 1,000 consecu-
tive cipher operations (private and public for public key ciphers, and encryption
and decryption for AES). Twofer incurs a reasonable 2.38x slowdown in perfor-
mance. The overhead is primarily due to (a) extra instructions required for error
checking, and (b) the high latency of AVX-512 vector instructions.

The energy consumption was measured with Likwid 4.2.1 [17] using hardware
performance counters. The results show that applying Twofer imposes a 2.32x
energy overhead in comparison to Scalar.

Twofer memory overhead is also negligible because cipher states and S-boxes
only occupy a small fraction of the overall memory footprint in execution. Public
ciphers generally have a small cipher state and are dominated by arithmetic
calculations.

4 Related Work

Prior work for the mitigation of both fault and side-channel attacks exists. For
instance, Wiretap codes that provide resistance against SCA can be used for fault
detection up to a certain level of injection [6]. Bringer et al. proposed a smart card
friendly Orthogonal Direct Sum Masking technique to protect the AES algorithm
against both SCA and FA [5]. This technique is not fully protected against
fault attacks because of the author’s assumption that generating a fault with a
higher Hamming distance is more difficult. An example of such an attack can
be DFA attacks that require random byte fault injection [18]. Similar ideas have
been proposed in [7]. These proposed techniques also have not been automated,
however, unlike the work presented here. The need for combined countermeasures
is also increasing due to recent advances towards combined attacks. Examples
of such attacks are discussed in [1,9,15].

5 Conclusion

Compiler techniques have not been fully examined in the context of physical
attacks and especially in mitigating multiple types of attacks simultaneously.
For instance, countermeasures against fault and side-channel attacks rely on
different techniques. Integrating both countermeasures is a nontrivial task and
often imposes overhead that exceeds the sum of individual countermeasures.

This work demonstrated that a unified compiler-based approach is possible
to tackle both fault and side-channel attacks by leveraging redundancy through
vectorization along with masking.

References

1. Amiel, F., Villegas, K., Feix, B., Marcel, L.: Passive and active combined attacks:
Combining fault attacks and side channel analysis. In: FDTC’07. pp. 92-102. IEEE
(2007)

10.
11.

12.

13.

14.

15.

16.

17.

18.

New Opportunities for Compilers in Computer Security 7

. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s

apprentice guide to fault attacks. Proceedings of the IEEE 94(2), 370-382 (2006)
Bayrak, A.G., Velickovic, N., Regazzoni, F., Novo, D., Brisk, P., Ienne, P.: An
EDA-friendly protection scheme against side-channel attacks. In: DATE’13. pp.
410-415. EDA Consortium (2013)

Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: CHES’04. pp. 16-29. Springer (2004)

Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct
sum masking. In: WISTP’14. pp. 40-56. Springer (2014)

Bringer, J., Chabanne, H., Le, T.H.: Protecting AES against side-channel analysis
using wire-tap codes. Journal of Cryptographic Engineering pp. 1-13 (2012)
Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-
channel attacks. Advances in Mathematics of Communications 10(1) (2016)
Chen, Z., Shen, J., Nicolau, A., Veidenbaum, A., Farhady, N.: CAMFAS: A com-
piler approach to mitigate fault attacks via enhanced simdization. In: FDTC’17.
pp. 57-64. IEEE (2017)

Clavier, C., Feix, B., Gagnerot, G., Roussellet, M.: Passive and active combined
attacks on AES combining fault attacks and side channel analysis. In: FDTC’10.
pp. 10-19. IEEE (2010)

FIPS, P.: 140-2. Security Requirements for Cryptographic Modules 25 (2001)
Ghalaty, N.F., Yuce, B., Taha, M., Schaumont, P.: Differential fault intensity anal-
ysis. In: FDTC’14. pp. 49-58. IEEE (2014)

Killmann, W., Lange, T., Lochter, M., Thumser, W., Wicke, G.: Minimum require-
ments for evaluating side-channel attack resistance of elliptic curve implementa-
tions. Downloadable via http://www.bsi.bund.de (2011)

Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: CRYPTO’99. pp.
789-789 (1999)

Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: ACM SIGPLAN Notices. vol. 40, pp. 190-200 (2005)
Roche, T., Lomné, V., Khalfallah, K.: Combined fault and side-channel attack on
protected implementations of AES. CARDIS’11 pp. 65-83 (2011)

Schneider, T., Moradi, A., Giineysu, T.: ParTI-towards combined hardware coun-
termeasures against side-channel and fault-injection attacks. In: Annual Cryptol-
ogy Conference. pp. 302-332 (2016)

Treibig, J., Hager, G., Wellein, G.: Likwid: A lightweight performance-oriented tool
suite for x86 multicore environments. In: ICPPW’10. pp. 207-216. IEEE (2010)
Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: WISTP’11. pp. 224-233. Springer
(2011)

http://www.bsi.bund.de

	New Opportunities for Compilersin Computer Security

