
Poster: Security Analysis of Multi-Sensor Fusion
based Localization in Autonomous Vehicles

Junjie Shen⇤, Jun Yeon Won⇤, Shinan Liu†, Qi Alfred Chen⇤, Alexander Veidenbaum⇤
⇤University of California, Irvine; †University of Electronic Science and Technology of China

{junjies1, junyeonw, alfchen, alex.veidenbaum}@uci.edu; liushinan63@gmail.com

Abstract—Precise and robust localization is highly critical

for making correct and safe driving decisions in Autonomous

Vehicles (AVs). To achieve this goal, they are usually equipped

with redundant and complementary sensors, e.g., LiDAR, GPS,

and IMU, and use Multi-Sensor Fusion (MSF) algorithms to

combine the observations. However, it is largely unclear how

robust these MSF algorithms are in presence of practical sensor

attacks such as GPS spoofing. In this poster, we share our recent

progress in performing the first security analysis of representative

MSF designs in AV systems under GPS spoofing attack.

I. INTRODUCTION

In recent years, Autonomous Vehicles (AVs) have started to
enter our daily life. Waymo launched a self-driving taxi service
in Phoenix, Arizona; Baidu collaborated with a vehicle man-
ufacture to deploy their open-source AV platform Apollo [1]
on shuttle buses. Within the AV system, localization, which
estimates the real-time location of the vehicle, is one of the
most important modules that are critical for making correct
driving decisions. To improve the robustness, AV systems
generally adopt a Multi-Sensor Fusion (MSF) design in the
localization module [2], [3]. In the MSF, multiple localization
sensors such as Inertial Measurement Units (IMU), GPS, and
LiDAR are fused together using algorithms such as Kalman
Filter (KF) to provide a robust location estimation [2].

While MSF can effectively increase the robustness for
sensor noises, it is still unclear how robust it is under deliberate
sensor attacks. In the context of AV localization, a classic but
still practical sensor attack vector is GPS spoofing, which has
been concretely demonstrated on various real-world systems
such as drones, yacht, and smartphones. Unfortunately, due to
the lack of cryptographic protection for civilian GPS usage,
such spoofing is fundamentally difficult to be fully prevented
today [4]. Considering the vital importance of AV localization
to correct AV driving decision making and thus road safety, it
is highly necessary to understand its security property under
GPS spoofing.

In this work, we perform the first systematic security
analysis of MSF-based AV localization under GPS spoofing.
To perform the analysis, we first design synthetic scenarios
to overcome the challenges in the handling of sensor noises
and the lack of ground truth. Next, we formulate the analysis
task as an optimization problem to understand the upper bound
of attack capability, and then leverage the analysis insights to
identify effective spoofing strategies. Our preliminary results
show that a well-designed spoofing strategy is able to deviate
the localization estimation of a representative MSF implemen-
tation by 2 meters in as short as 10 seconds. Our future work
includes evaluating the discovered attack strategies on real-
world traces and performing case studies on end-to-end driving

decisions in open-source real-world AV systems to understand
the security implications on road safety.

II. THREAT MODEL

We assume a car-following model where the attacker is
driving a car and following the victim AV with the same speed
while launching the GPS spoofing. The practicality of such
attack process has been demonstrated on real roads by previous
work [5]. As the first step towards understanding the security
properties, in this work we assume that the attacker has the
access to the implementation of the MSF-based localization
algorithm in the victim AV. This is possible when 1) the
victim adopts a representative algorithm implementation that is
publicly available, or 2) the attacker owns an AV of the same
model as the victim and can reverse engineer it to analyze the
algorithm binary. In §V, we discuss our plan to explore the
possibility of launching the attack without such access.

III. ANALYSIS METHODOLOGY

In this section, we detail the key steps in our security
analysis methodology.

Synthetic scenario. AV systems make decisions based on
real-world sensor data. However, performing security analysis
directly on real-world data is less effective since 1) the pres-
ence of sensor noises and biases makes it difficult to pinpoint
the true cause of erroneous behaviors, and 2) real-world data
does not include the ground truth localization to understand
the actual attack effectiveness. Thus, in our analysis we create
synthetic driving scenarios in which sensor data is directly
reflecting the synthetic trajectory without any noise and bias.

As the first step, we model the simplest driving scenario:
driving with a constant speed on a straight-line road. In
this scenario, we set all fields in IMU data to zero except
the gravity field. Since our analysis focuses on the security
property of sensor fusion algorithm instead of individual non-
fused localization sources, we replace the LiDAR locator with
an ideal localization source (i.e., ground truth location) to
minimize the effect of imperfect LiDAR locator designs on the
analysis, as well as to reduce the modeling overhead. For the
GPS data, we set the non-spoofed GPS location to the ground
truth and set the standard deviation to the median value in real-
world traces. During spoofing attack period in the analysis, we
also set the GPS data standard deviation to the same value as
the non-spoofed case.

Algorithm security analysis. The attack goal can be for-
mulated as an optimization problem: finding the best spoofing
strategy which can achieve the maximum deviation in MSF
localization estimation. To efficiently solve the optimization
problem, we apply gradient ascent to find the best spoofing



Fig. 1. Loss surface of the first spoofing GPS point.

parameters iteratively. Since we do not have the analytic form
of the underlying optimization problem (i.e., the state equation
of MSF), a numerical approximation of the gradient is used.

By solving the optimization problem in the synthetic
scenario, we can identify the upper bound of the attack
effectiveness, i.e., the maximum deviation of the localization
estimation output a GPS spoofing attack can achieve. This is an
upper bound since the optimization process has the knowledge
of the localization module output, which is not accessible by
the attacker during the actual attack time. Drawing insights
from the analysis results, we then identify a set of spoofing
strategies without such knowledge and analyze their effective-
ness compared to the upper bound.

Attack evaluation and case studies. To understand the
performance of the discovered attack strategies, we perform at-
tack evaluation on real-world sensor traces, e.g., those released
by Baidu Apollo or open datasets such as KITTI. In addition,
to understand the security implications of these discovered
attacks in AV driving scenarios, we perform case studies by
launching these attacks during the operation of open-source AV
systems such as Baidu Apollo in common real-world driving
scenarios using simulation. Through these case studies, we
demonstrate the attack impact on the end-to-end AV driving
decision process and the potential damage on road safety.

IV. PRELIMINARY RESULTS

We use Baidu Apollo’s MSF implementation [2] as an
example to perform the security analysis. The GPS spoofing
attack will introduce one incorrect location per second since
the GPS receiver operates at 1 Hz in Baidu Apollo. We refer
to the spoofed GPS locations as spoofing points in the analysis.

Fig. 1 shows the loss surface of the first spoofing point,
plotted by sampling fine-grained spoofing parameters (i.e.,
distances and degrees of the spoofed locations away from the
ground truth trajectory). As shown, naive spoofing choices can
only reach sub-optimal deviations. Also, the outlier detection
commonly used in MSF is taking effect when the spoofing
distance exceeds some certain threshold. We also find that
the optimal parameters vary across different spoofing points,
which indicates that a carefully designed spoofing strategy (i.e.,
spoofing parameters for the spoofing points) is required to
reach the maximum deviation over a series of spoofing points.

Analysis results. The analysis results for the upper bound
of the attack effectiveness on the first 10 spoofing points is
shown in Fig. 2. We performed this analysis using two ap-
proaches: sampling and gradient ascent. In the sampling based
approach, we enumerate different spoofing parameters for each
spoofing point to get the best parameters. In the gradient
ascent, the numerical approximation based optimization is used
to improve the efficiency of parameter searching. As shown,
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Fig. 2. Deviation upper bounds from the sampling based and the gradient
based approaches. Two naive spoofing strategies are also shown in the figure.

the deviation upper bound at the 10-th point is close to 2
meters, which is already large enough to cause the victim AV
to locate itself on a wrong traffic lane.

Fig. 2 also shows the deviations of two naive spoofing
strategies: 1) fixed distance, which sets all the spoofing points
away from the ground truth with a constant distance (2 meters
in the lateral distance), and 2) fixed step size, where we
gradually increase the distances of the spoofing points to the
ground truth with a fixed step size (0.2 meter). As expected,
the two strategies can barely cause any deviation. The reason
is twofold: 1) naive spoofing strategies do not consider the
change of optimal parameters across different spoofing points,
and 2) the parameters have to be carefully chosen to avoid
being detected by the outlier detection in Apollo’s MSF
implementation. To achieve effective spoofing, we plan to
analyze the reasons behind the high effectiveness found in the
upper bound analysis and design spoofing strategies based on
the insights. For example, as indicated in Fig. 2 one strategy
may be increasing the spoofing distances exponentially, which
can help effectively avoid the outlier detection.

V. CONCLUDING REMARKS AND FUTURE PLANS

In this work, we perform the first systematic security
analysis of GPS spoofing on a representative MSF design.
Our initial results demonstrate that a well-design GPS spoofing
strategy is able to achieve large deviation in the localization
estimation. Building upon these results, we plan to 1) relax
the attack requirement by introducing noises in the spoofing
parameters and standard deviation, and 2) evaluate the attack
success rate on real-world sensor traces and perform case
studies on the end-to-end driving decisions made in Baidu
Apollo. We also plan to extend the threat model by removing
the assumption that the attacker has access to the victim’s
MSF implementation. For this, we plan to implement an
MSF algorithm ourselves following a common design and
study the transferability of its spoofing strategies to the MSF
implementation in Baidu Apollo.
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Autonomous Vehicle Localization
Autonomous Vehicle (AV) localization 
• Real-time localization for making correct driving decisions 
• One of the most critical modules: affects perception/planning/control 

Multi-Sensor Fusion (MSF) 
• Kalman Filter: fuse location sensors, e.g. IMU, GPS, LiDAR, for robust 

localization 
• Outlier detection: reject anomalies in sensor data

GPS Spoofing and Threat Model

Analysis Methodology

Preliminary Results

GPS spoofing attack 
• Inject falsified locations in victim’s GPS receiver 
• A low-cost GPS spoofer can be as cheap as $225 
• Fundamentally hard to prevent for civilian GPS receivers 

Threat model 
• Assume a car-following model: attacker drives at same speed as AV 
• MSF implementation available 

• AV adopts a representative MSF implementation that is publicly available (e.g., 
released by open-source AV platform like Baidu Apollo) 

• Or, attacker owns an AV of the same model with the victim and can reverse 
engineer it

2 4 6 8 10
Spoofing GPS Index

0.0

0.5

1.0

1.5

2.0

D
ev

ia
ti
on

(m
)

Sampling Based

Gradient Ascent

Fixed Distance

Fixed Step Size

Synthetic scenario for effective analysis 
• Security analysis on real-world sensor data is less effective 

• Sensor noises and biases make it hard to pinpoint true causes for 
erroneous behaviors 

• No ground truth for understanding attack effectiveness 
• Create synthetic scenario: sensor data directly reflects the trajectory 

Algorithm security analysis 
• Attack goal: find best spoofing strategy to achieve maximum deviation 
• Identify the upper bound of the attack effectiveness 

• Numerical approximation based gradient ascent 
• Draw insights of creating effective spoofing strategies 

Attack evaluation and case studies 
• Evaluate spoofing strategies using real-world sensor traces 
• Case studies by launching these attacks in open-source AV systems 

Experiment setup 
• Target MSF binary in Baidu Apollo 
• Synthetic scenario: 

• Constant speed on a straight line road 

Loss surface of the 1st spoofing point 
• Naive spoofing choice can only reach sub-optimal 

deviation 
• Outlier detection: larger distance cannot reach 

larger deviation 

Analysis results 
• Well-designed spoofing strategies can cause 2-meter deviation in only 10s 
• Naive spoofing strategies can barely reach any deviation
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